Vol. 65
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-01-07
Optimized Superconducting Nanowire Single Photon Detectors to Maximize Absorptance
By
Progress In Electromagnetics Research B, Vol. 65, 81-108, 2016
Abstract
Dispersion characteristics of four types of superconducting nanowire single photon detectors, nano-cavity-array- (NCA-), nano-cavity-deflector-array- (NCDA-), nano-cavity-double-deflector-array- (NCDDA-) and nano-cavity-trench-array- (NCTA-) integrated (I-A-SNSPDs) devices was optimized in three periodicity intervals commensurate with half-, three-quarter- and one SPP wavelength. The optimal con gurations capable of maximizing NbN absorptance correspond to periodicity-dependent tilting in S-orientation (90˚ azimuthal orientation). In NCAI-A-SNSPDs absorptance maxima are reached at the plasmonic Brewster angle (PBA) due to light tunneling. The absorptance maximum is attained in a wide plasmonic-pass-band in NCDAI1/2*λ-A, inside a flat-plasmonic-pass-band in NCDAI3/4*λ-A and inside a narrow plasmonic-band in NCDAIλ-A. In NCDDAI1/2*λ-A bands of strongly coupled cavity and plasmonic modes cross, in NCDDAI3/4*λ-A an inverted-plasmonic-band-gap develops, while in NCDDAIλ-A a narrow plasmonic-pass-band appears inside an inverted-minigap. The absorptance maximum is achieved in NCTAI1/2*λ-A inside a plasmonic-pass-band, in NCTAI3/4*λ-A at inverted-plasmonic-band-gap center, while in NCTAIλ-A inside an inverted-minigap. The highest 95.05% absorptance is attained at perpendicular incidence onto NCTAIλ-A. Quarter-wavelength type cavity modes contribute to the near-field enhancement around NbN segments except in NCDAIλ-A and NCDDAI3/4*λ-A. The polarization contrast is moderate in NCAIA-SNSPDs (~102). NCDAI- and NCDDAI-A-SNSPDs make possible to attain considerably large polarization contrast (~102-103 and ~103~104), while NCTAI-A-SNSPDs exhibit a weak polarization selectivity (~10-102).
Citation
Maria Csete, Gabor Szekeres, Andras Szenes, Balazs Banhelyi, Tibor Csendes, and Gabor Szabo, "Optimized Superconducting Nanowire Single Photon Detectors to Maximize Absorptance," Progress In Electromagnetics Research B, Vol. 65, 81-108, 2016.
doi:10.2528/PIERB15090904
References

1. Hadfield, R. H., J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at with twin superconducting single-photon detectors," Applied Physics Letters, Vol. 89, 241129, 2006.
doi:10.1063/1.2405870        Google Scholar

2. Takesue, H., S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting photon-detectors," Nature Photonics, Vol. 1, 343, 2007.
doi:10.1038/nphoton.2007.75        Google Scholar

3. Honjo, T., S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, "Long-distance etanglement-based quantum key distribution over optical fiber," Optics Express, Vol. 16, 19118, 2008.
doi:10.1364/OE.16.019118        Google Scholar

4. Hadfield, R. H., "Single-photon detectors for optical quantum information applications," Nature Photonics, Vol. 3, 696, 2009.
doi:10.1038/nphoton.2009.230        Google Scholar

5. Eisaman, M. D., J. Fan, A. Migdall, and S. V. Polyakov, "Invited review article: Single-photon sources and detectors," Review of Scientific Instruments, Vol. 82, 071101, 2011.
doi:10.1063/1.3610677        Google Scholar

6. Natarajan, C. M., M. G. Tanner, and R. H. Hadfield, "Superconducting nanowire single-photon detectors: Physics and applications," Superconductor Science and Technology, Vol. 25, 063001, 2012.
doi:10.1088/0953-2048/25/6/063001        Google Scholar

7. Bonneau, D., M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. Obrien, "Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices," Physical Review Letters, Vol. 108, 053601, 2012.
doi:10.1103/PhysRevLett.108.053601        Google Scholar

8. Najafi, F., J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, "On-chip detection of non-classical light by scalable integration of integration of single-photon detectors," Nature Communications, Vol. 6, 5873, 2014.
doi:10.1038/ncomms6873        Google Scholar

9. Kerman, A. J., E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Goltsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," Applied Physics Letters, Vol. 88, 111116, 2006.
doi:10.1063/1.2183810        Google Scholar

10. Rosfjord, K. M., J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Goltsman, and K. K. Berggren, "Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating," Optics Express, Vol. 14, 527, 2006.
doi:10.1364/OPEX.14.000527        Google Scholar

11. Robinson, B. S., A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, "781 Mbit/s photon-counting optical communications using a superconducting nanowire detector," Optics Letters, Vol. 31/4, 444, 2006.
doi:10.1364/OL.31.000444        Google Scholar

12. Robinson, B. S., A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol'tsman, and K. K. Berggren, "Multi-element superconducting nanowire single-photon detector," IEEE Transactions on Applied Superconductivity, Vol. 17, 279, 2007.
doi:10.1109/TASC.2007.898720        Google Scholar

13. Anant, V., A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, "Optical properties of superconducting nanowire single-photon detectors," Optics Express, Vol. 16, 10750, 2008.
doi:10.1364/OE.16.010750        Google Scholar

14. Dorenbos, S. N., E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, "Low noise superconducting single photon detectors on silicon," Applied Physics Letters, Vol. 93, 161102, 2008.
doi:10.1063/1.3003579        Google Scholar

15. Divochiy, A., F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths," Nature Photonics, Vol. 2, 302, 2008.
doi:10.1038/nphoton.2008.51        Google Scholar

16. Dauler, E. A., A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, "Photon-number resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors," Journal of Modern Optics, Vol. 56, 364, 2009.
doi:10.1080/09500340802411989        Google Scholar

17. Marsili, F., D. Bitauld, A. Fiore, A. Gaggero, R. Leoni, F. Mattioli, A. Divochiy, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, and G. Goltsman, "Superconducting parallel nanowire detector with photon number resolving functionality," Journal of Modern Optics, Vol. 56, 334, 2009.
doi:10.1080/09500340802220729        Google Scholar

18. Miki, S., M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, "Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system," Optics Express, Vol. 17, 23557, 2009.
doi:10.1364/OE.17.023557        Google Scholar

19. Baek, B., J. A. Stern, and S. W. Nam, "Superconducting nanowire single-photon detector in an optical cavity for front-side illumination," Applied Physics Letters, Vol. 95, 191110, 2009.
doi:10.1063/1.3263715        Google Scholar

20. Bitauld, D., F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, "Nanoscale optical detector with single-photon and multiphoton sensitivity," Nano Letters, Vol. 10, 2977, 2010.
doi:10.1021/nl101411h        Google Scholar

21. Gaggero, A., S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, "Nanowire superconducting single-photon detectors and GaAs for integrated quantum photonic applications," Applied Physics Letters, Vol. 97, 151108, 2009.
doi:10.1063/1.3496457        Google Scholar

22. Marsili, F., F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, "Single-photon detectors based on ultra-narrow superconducting nanowires," Nano Letters, Vol. 11, 2048, 2011.
doi:10.1021/nl2005143        Google Scholar

23. Csete, M., Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, "Numerical method to optimize the polar-azimuthal orientation of infrared superconducting nanowire single-photon detectors," Applied Optics, Vol. 50/31, 5949, 2011.
doi:10.1364/AO.50.005949        Google Scholar

24. Hu, X., E. A. Dauler, R. J. Molnar, and K. K. Berggren, "Superconducting nanowire single-photon detectors integrated with optical nano-antennae," Optics Express, Vol. 19, 17, 2011.
doi:10.1364/OE.19.000017        Google Scholar

25. Csete, M., Á. Sipos, F. Najafi, and K. K. Berggren, "Optimized polar-azimuthal orientations for polarized light illumination of different superconducting nanowire single-photon detector designs," Journal of Nanophotonics, Vol. 6/1, 063523, 2012.
doi:10.1117/1.JNP.6.063523        Google Scholar

26. Csete, M., A. Szalai, Á. Sipos, and G. Szabó, "Impact of polar-azimuthal illumination angles on efficiency of nano-cavity-array integrated single-photon detectors," Optics Express, Vol. 20/15, 17065, 2012.
doi:10.1364/OE.20.017065        Google Scholar

27. Akhlaghi, M. K., H. Atikian, A. Eftekharian, M. Loncar, and A. H. Majedi, "Reduced dark counts in optimized geometries for superconducting nanowire single photon detectors," Optics Express, Vol. 20/21, 23610, 2012.
doi:10.1364/OE.20.023610        Google Scholar

28. Verma, V. B., F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, "A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector," Applied Physics Letters, Vol. 101, 251114, 2012.
doi:10.1063/1.4768788        Google Scholar

29. Marsili, F., V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, "Detecting single infrared photons with 93% system efficiency," Nature Photonics, Vol. 7, 210, 2013.
doi:10.1038/nphoton.2013.13        Google Scholar

30. Eftekharian, A., H. Atikian, and A. H. Majedi, "Plasmonic superconducting nanowire single photon detector," Optics Express, Vol. 21/3, 3043, 2013.
doi:10.1364/OE.21.003043        Google Scholar

31. Csete, M., Á. Sipos, A. Szalai, F. Najafi, G. Szabó, and K. K. Berggren, "Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures," Scientific Reports, Vol. 3, 2406, 2013.
doi:10.1038/srep02406        Google Scholar

32. Heath, R. M., M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, "Nano-antenna enhancement for telecom-wavelength superconducting single photon detectors," Nano Letters, Vol. 15/2, 819, 2014.        Google Scholar

33. Csete, M., G. Szekeres, A. Szenes, A. Szalai, and G. Szabó, "Plasmonic structure integrated single-photon detector configurations to improve absorptance and polarization contrast," Sensors, Vol. 15, No. 2, 3513, 2015.
doi:10.3390/s150203513        Google Scholar

34. Bennett, C. and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 175-179, 1984.        Google Scholar

35. Pryde, G. J., J. L. Obrien, A. G. White, S. D. Bartlett, and T. C. Ralph, "Measuring a photonic qubit without destroying it," Physical Review Letters, Vol. 92, 190402, 2004.
doi:10.1103/PhysRevLett.92.190402        Google Scholar

36. Knill, E., R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature, Vol. 409, 46, 2001.
doi:10.1038/35051009        Google Scholar

37. Ladd, T. D., F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. Obrien, "Quantum computers," Nature, Vol. 464, 45, 2010.
doi:10.1038/nature08812        Google Scholar

38. Sánchez-Gil, J. A., "Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters," Applied Physics Letters, Vol. 73/24, 3509, 1998.
doi:10.1063/1.122820        Google Scholar

39. Csendes, T., L. Pál, J. O. H. Sendín, and J. R. Banga, "The GLOBAL optimization method revisited," Optimization Letters, Vol. 2, 445, 2008.
doi:10.1007/s11590-007-0072-3        Google Scholar

40. Bánhelyi, B., T. Csendes, B.M. Garay, and L. Hatvani, "A computer-assisted proof for Sigma_3-chaos in the forced damped pendulum equation," SIAM Journal on Applied Dinamical Systems, Vol. 7, 843, 2008.
doi:10.1137/070695599        Google Scholar

41. Bánhelyi, B., T. Csendes, T. Krisztin, and A. Neumaier, "Global attractivity of the zero solution for Wright's equation," SIAM Journal on Applied Dinamical Systems, Vol. 13, 537, 2014.
doi:10.1137/120904226        Google Scholar

42. Al, A., G. Daguanno, N. Mattiucci, and M. J. Bloemer, "Plasmonic Brewster angle: Broadband extraordinary transmission though optical gratings," Physical Review Letters, Vol. 106, 123902, 2011.
doi:10.1103/PhysRevLett.106.123902        Google Scholar

43. Aközbek, N., N. Mattiucci, D. de Ceglia, R. Trimm, A. Al, G. Daguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, "Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave," Physical Review B, Vol. 85, 205430, 2012.
doi:10.1103/PhysRevB.85.205430        Google Scholar

44. Argyropoulos, C., G. Daguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Al, "Matching and funneling light at the plasmonic Brewster angle," Physical Review B, Vol. 85, 024304, 2012.
doi:10.1103/PhysRevB.85.024304        Google Scholar

45. Sobnack, M. B., W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, "Stationary surface plasmons on a zero-order metal grating," Physical Review Letters, Vol. 80/25, 5667, 1998.
doi:10.1103/PhysRevLett.80.5667        Google Scholar

46. Tan, W.-C., T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Physical Review B, Vol. 59/19, 12661, 1999.
doi:10.1103/PhysRevB.59.12661        Google Scholar

47. Hooper, I. R. and J. R. Sambles, "Dispersion of surface plasmon polaritons on short-pitch metal gratings," Physical Review B, Vol. 65, 165432, 2002.
doi:10.1103/PhysRevB.65.165432        Google Scholar

48. Hooper, I. R. and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Physical Review B, Vol. 66, 205408, 2002.
doi:10.1103/PhysRevB.66.205408        Google Scholar

49. Chen, Y. J., E. S. Koteles, R. J. Seymour, G. J. Sonek, and J. M. Ballantyne, "Surface plasmon on gratings: Coupling in the minigap regions," Solid State Communications, Vol. 46/2, 95, 1983.
doi:10.1016/0038-1098(83)90586-0        Google Scholar

50. Garcia-Vidal, F. J., J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," Journal of Lightwave Technology, Vol. 17/11, 2191, 1999.
doi:10.1109/50.803010        Google Scholar

51. Marquier, F., J.- J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Optics Express, Vol. 13/1, 70, 2004.        Google Scholar

52. de Ceglia, D., M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, "Plasmonic band edge effects on the transmission properties of metal gratings," AIP Advances, Vol. 1, 032151, 2011.
doi:10.1063/1.3638161        Google Scholar

53. Collin, S., "Nanostructure arrays in free-space: Optical properties and applications," Reports on Progress in Physics, Vol. 77, 126402, 2014.
doi:10.1088/0034-4885/77/12/126402        Google Scholar

54. Wood, R. W., "Anomalous diffraction gratings," Physical Review, Vol. 15, 928, 1935.
doi:10.1103/PhysRev.48.928        Google Scholar

55. Hessel, A. and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Applied Optics, Vol. 4/10, 1275-1297, 1965.
doi:10.1364/AO.4.001275        Google Scholar

56. Sarrazin, M., J.-P. Vigneron, and J.-M. Vigoureux, "Role ofWood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Physical Review B, Vol. 67, 085415, 2003.
doi:10.1103/PhysRevB.67.085415        Google Scholar

57. Philpot, M. R. and J. D. Swalen, "Exciton surface polaritons on organic crystals," The Journal of Chemical Physics, Vol. 69, No. 6, 2912, 1978.
doi:10.1063/1.436890        Google Scholar

58. Welford, K. R., "Surface plasmon-polaritons," IOP Short Meeting Series, Vol. 9, 25, 1988.        Google Scholar

59. Yang, F., J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Physical Review B, Vol. 44, 5855, 1991.
doi:10.1103/PhysRevB.44.5855        Google Scholar

60. Sarrazin, M. and J.-P. Vigneron, "Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array," Physical Review, Vol. 71, 075404, 2005.
doi:10.1103/PhysRevB.71.075404        Google Scholar

61. Weiner, J., "The physics of light transmission through subwavelength apertures and aperture arrays," Reports on Progress in Physics, Vol. 72, 064401, 2009.
doi:10.1088/0034-4885/72/6/064401        Google Scholar

62. Torma, P. and W. L. Barnes, "Strong coupling between surface plasmon polaritons and emitters: A review," Reports on Progress in Physics, Vol. 78, 013901, 2015.
doi:10.1088/0034-4885/78/1/013901        Google Scholar

63. Fan, R.-H., R.-W. Peng, X.-R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, "Transparent metals for ultrabroadband electromagnetic waves," Advanced Materials, Vol. 24, 1980, 2012.
doi:10.1002/adma.201104483        Google Scholar

64. Sakat, E., G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Hadar, and J.-L. Pelouard, "Free-standing guided-mode resonance band-pass filters: From 1D to 2D structures," Optics Express, Vol. 20/12, 13082, 2012.
doi:10.1364/OE.20.013082        Google Scholar

65. Shen, H. and B. Maes, "Enhanced optical transmission through tapered metallic gratings," Applied Physics Letters, Vol. 100, 241104, 2012.
doi:10.1063/1.4729005        Google Scholar

66. Barbara, A., P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, "Electromagnetic resonances of subwavelength rectangular metallic gratings," The European Physical Journal D, Vol. 23, 143, 2003.
doi:10.1140/epjd/e2003-00025-9        Google Scholar

67. Tan, W.-C., J. R. Sambles, and T. W. Preist, "Double-period zero-order metal gratings as effective selective absorbers," Physical Review B, Vol. 61/19, 13177, 2000.
doi:10.1103/PhysRevB.61.13177        Google Scholar

68. Chan, H. B., Z. Marcet, Kwangje Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, "Optical transmission through double-layer metallic subwavelength slit arrays," Optics Letters, Vol. 31/4, 516, 2006.
doi:10.1364/OL.31.000516        Google Scholar

69. Cheng, C., J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, "Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures," Physics Review B, Vol. 78, 075406, 2008.
doi:10.1103/PhysRevB.78.075406        Google Scholar

70. Barbara, A., S. Collin, Ch. Sauvan, J. Le Perchec, C. Maxime, J.-L. Pelouard, and P. Quémerais, "Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating," Optics Express, Vol. 18/14, 14913, 2010.
doi:10.1364/OE.18.014913        Google Scholar

71. Skigin, D. C. and R. A. Depine, "Narrow gaps of transmission through metallic structured gratings with subwavelength slits," Physics Review E, Vol. 74, 046606, 2006.
doi:10.1103/PhysRevE.74.046606        Google Scholar

72. Csendes, T., B. M. Garay, and B. Bánhelyi, "A verified optimization technique to locate chaotic regions of a Hénon system," Journal of Global Optimization, Vol. 35, 145, 2006.
doi:10.1007/s10898-005-1509-9        Google Scholar