Department of Optics and Quantum Electronics
University of Szeged
Hungary
HomepageDepartment of Optics and Quantum Electronics
University of Szeged
Hungary
Homepage1. Hadfield, R. H., J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at with twin superconducting single-photon detectors," Applied Physics Letters, Vol. 89, 241129, 2006.
doi:10.1063/1.2405870 Google Scholar
2. Takesue, H., S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting photon-detectors," Nature Photonics, Vol. 1, 343, 2007.
doi:10.1038/nphoton.2007.75 Google Scholar
3. Honjo, T., S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, "Long-distance etanglement-based quantum key distribution over optical fiber," Optics Express, Vol. 16, 19118, 2008.
doi:10.1364/OE.16.019118 Google Scholar
4. Hadfield, R. H., "Single-photon detectors for optical quantum information applications," Nature Photonics, Vol. 3, 696, 2009.
doi:10.1038/nphoton.2009.230 Google Scholar
5. Eisaman, M. D., J. Fan, A. Migdall, and S. V. Polyakov, "Invited review article: Single-photon sources and detectors," Review of Scientific Instruments, Vol. 82, 071101, 2011.
doi:10.1063/1.3610677 Google Scholar
6. Natarajan, C. M., M. G. Tanner, and R. H. Hadfield, "Superconducting nanowire single-photon detectors: Physics and applications," Superconductor Science and Technology, Vol. 25, 063001, 2012.
doi:10.1088/0953-2048/25/6/063001 Google Scholar
7. Bonneau, D., M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. Obrien, "Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices," Physical Review Letters, Vol. 108, 053601, 2012.
doi:10.1103/PhysRevLett.108.053601 Google Scholar
8. Najafi, F., J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, "On-chip detection of non-classical light by scalable integration of integration of single-photon detectors," Nature Communications, Vol. 6, 5873, 2014.
doi:10.1038/ncomms6873 Google Scholar
9. Kerman, A. J., E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Goltsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," Applied Physics Letters, Vol. 88, 111116, 2006.
doi:10.1063/1.2183810 Google Scholar
10. Rosfjord, K. M., J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Goltsman, and K. K. Berggren, "Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating," Optics Express, Vol. 14, 527, 2006.
doi:10.1364/OPEX.14.000527 Google Scholar
11. Robinson, B. S., A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, "781 Mbit/s photon-counting optical communications using a superconducting nanowire detector," Optics Letters, Vol. 31/4, 444, 2006.
doi:10.1364/OL.31.000444 Google Scholar
12. Robinson, B. S., A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol'tsman, and K. K. Berggren, "Multi-element superconducting nanowire single-photon detector," IEEE Transactions on Applied Superconductivity, Vol. 17, 279, 2007.
doi:10.1109/TASC.2007.898720 Google Scholar
13. Anant, V., A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, "Optical properties of superconducting nanowire single-photon detectors," Optics Express, Vol. 16, 10750, 2008.
doi:10.1364/OE.16.010750 Google Scholar
14. Dorenbos, S. N., E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, "Low noise superconducting single photon detectors on silicon," Applied Physics Letters, Vol. 93, 161102, 2008.
doi:10.1063/1.3003579 Google Scholar
15. Divochiy, A., F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths," Nature Photonics, Vol. 2, 302, 2008.
doi:10.1038/nphoton.2008.51 Google Scholar
16. Dauler, E. A., A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, "Photon-number resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors," Journal of Modern Optics, Vol. 56, 364, 2009.
doi:10.1080/09500340802411989 Google Scholar
17. Marsili, F., D. Bitauld, A. Fiore, A. Gaggero, R. Leoni, F. Mattioli, A. Divochiy, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, and G. Goltsman, "Superconducting parallel nanowire detector with photon number resolving functionality," Journal of Modern Optics, Vol. 56, 334, 2009.
doi:10.1080/09500340802220729 Google Scholar
18. Miki, S., M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, "Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system," Optics Express, Vol. 17, 23557, 2009.
doi:10.1364/OE.17.023557 Google Scholar
19. Baek, B., J. A. Stern, and S. W. Nam, "Superconducting nanowire single-photon detector in an optical cavity for front-side illumination," Applied Physics Letters, Vol. 95, 191110, 2009.
doi:10.1063/1.3263715 Google Scholar
20. Bitauld, D., F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, "Nanoscale optical detector with single-photon and multiphoton sensitivity," Nano Letters, Vol. 10, 2977, 2010.
doi:10.1021/nl101411h Google Scholar
21. Gaggero, A., S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, "Nanowire superconducting single-photon detectors and GaAs for integrated quantum photonic applications," Applied Physics Letters, Vol. 97, 151108, 2009.
doi:10.1063/1.3496457 Google Scholar
22. Marsili, F., F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, "Single-photon detectors based on ultra-narrow superconducting nanowires," Nano Letters, Vol. 11, 2048, 2011.
doi:10.1021/nl2005143 Google Scholar
23. Csete, M., Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, "Numerical method to optimize the polar-azimuthal orientation of infrared superconducting nanowire single-photon detectors," Applied Optics, Vol. 50/31, 5949, 2011.
doi:10.1364/AO.50.005949 Google Scholar
24. Hu, X., E. A. Dauler, R. J. Molnar, and K. K. Berggren, "Superconducting nanowire single-photon detectors integrated with optical nano-antennae," Optics Express, Vol. 19, 17, 2011.
doi:10.1364/OE.19.000017 Google Scholar
25. Csete, M., Á. Sipos, F. Najafi, and K. K. Berggren, "Optimized polar-azimuthal orientations for polarized light illumination of different superconducting nanowire single-photon detector designs," Journal of Nanophotonics, Vol. 6/1, 063523, 2012.
doi:10.1117/1.JNP.6.063523 Google Scholar
26. Csete, M., A. Szalai, Á. Sipos, and G. Szabó, "Impact of polar-azimuthal illumination angles on efficiency of nano-cavity-array integrated single-photon detectors," Optics Express, Vol. 20/15, 17065, 2012.
doi:10.1364/OE.20.017065 Google Scholar
27. Akhlaghi, M. K., H. Atikian, A. Eftekharian, M. Loncar, and A. H. Majedi, "Reduced dark counts in optimized geometries for superconducting nanowire single photon detectors," Optics Express, Vol. 20/21, 23610, 2012.
doi:10.1364/OE.20.023610 Google Scholar
28. Verma, V. B., F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, "A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector," Applied Physics Letters, Vol. 101, 251114, 2012.
doi:10.1063/1.4768788 Google Scholar
29. Marsili, F., V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, "Detecting single infrared photons with 93% system efficiency," Nature Photonics, Vol. 7, 210, 2013.
doi:10.1038/nphoton.2013.13 Google Scholar
30. Eftekharian, A., H. Atikian, and A. H. Majedi, "Plasmonic superconducting nanowire single photon detector," Optics Express, Vol. 21/3, 3043, 2013.
doi:10.1364/OE.21.003043 Google Scholar
31. Csete, M., Á. Sipos, A. Szalai, F. Najafi, G. Szabó, and K. K. Berggren, "Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures," Scientific Reports, Vol. 3, 2406, 2013.
doi:10.1038/srep02406 Google Scholar
32. Heath, R. M., M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, "Nano-antenna enhancement for telecom-wavelength superconducting single photon detectors," Nano Letters, Vol. 15/2, 819, 2014. Google Scholar
33. Csete, M., G. Szekeres, A. Szenes, A. Szalai, and G. Szabó, "Plasmonic structure integrated single-photon detector configurations to improve absorptance and polarization contrast," Sensors, Vol. 15, No. 2, 3513, 2015.
doi:10.3390/s150203513 Google Scholar
34. Bennett, C. and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 175-179, 1984. Google Scholar
35. Pryde, G. J., J. L. Obrien, A. G. White, S. D. Bartlett, and T. C. Ralph, "Measuring a photonic qubit without destroying it," Physical Review Letters, Vol. 92, 190402, 2004.
doi:10.1103/PhysRevLett.92.190402 Google Scholar
36. Knill, E., R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature, Vol. 409, 46, 2001.
doi:10.1038/35051009 Google Scholar
37. Ladd, T. D., F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. Obrien, "Quantum computers," Nature, Vol. 464, 45, 2010.
doi:10.1038/nature08812 Google Scholar
38. Sánchez-Gil, J. A., "Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters," Applied Physics Letters, Vol. 73/24, 3509, 1998.
doi:10.1063/1.122820 Google Scholar
39. Csendes, T., L. Pál, J. O. H. Sendín, and J. R. Banga, "The GLOBAL optimization method revisited," Optimization Letters, Vol. 2, 445, 2008.
doi:10.1007/s11590-007-0072-3 Google Scholar
40. Bánhelyi, B., T. Csendes, B.M. Garay, and L. Hatvani, "A computer-assisted proof for Sigma_3-chaos in the forced damped pendulum equation," SIAM Journal on Applied Dinamical Systems, Vol. 7, 843, 2008.
doi:10.1137/070695599 Google Scholar
41. Bánhelyi, B., T. Csendes, T. Krisztin, and A. Neumaier, "Global attractivity of the zero solution for Wright's equation," SIAM Journal on Applied Dinamical Systems, Vol. 13, 537, 2014.
doi:10.1137/120904226 Google Scholar
42. Al, A., G. Daguanno, N. Mattiucci, and M. J. Bloemer, "Plasmonic Brewster angle: Broadband extraordinary transmission though optical gratings," Physical Review Letters, Vol. 106, 123902, 2011.
doi:10.1103/PhysRevLett.106.123902 Google Scholar
43. Aközbek, N., N. Mattiucci, D. de Ceglia, R. Trimm, A. Al, G. Daguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, "Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave," Physical Review B, Vol. 85, 205430, 2012.
doi:10.1103/PhysRevB.85.205430 Google Scholar
44. Argyropoulos, C., G. Daguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Al, "Matching and funneling light at the plasmonic Brewster angle," Physical Review B, Vol. 85, 024304, 2012.
doi:10.1103/PhysRevB.85.024304 Google Scholar
45. Sobnack, M. B., W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, "Stationary surface plasmons on a zero-order metal grating," Physical Review Letters, Vol. 80/25, 5667, 1998.
doi:10.1103/PhysRevLett.80.5667 Google Scholar
46. Tan, W.-C., T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Physical Review B, Vol. 59/19, 12661, 1999.
doi:10.1103/PhysRevB.59.12661 Google Scholar
47. Hooper, I. R. and J. R. Sambles, "Dispersion of surface plasmon polaritons on short-pitch metal gratings," Physical Review B, Vol. 65, 165432, 2002.
doi:10.1103/PhysRevB.65.165432 Google Scholar
48. Hooper, I. R. and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Physical Review B, Vol. 66, 205408, 2002.
doi:10.1103/PhysRevB.66.205408 Google Scholar
49. Chen, Y. J., E. S. Koteles, R. J. Seymour, G. J. Sonek, and J. M. Ballantyne, "Surface plasmon on gratings: Coupling in the minigap regions," Solid State Communications, Vol. 46/2, 95, 1983.
doi:10.1016/0038-1098(83)90586-0 Google Scholar
50. Garcia-Vidal, F. J., J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," Journal of Lightwave Technology, Vol. 17/11, 2191, 1999.
doi:10.1109/50.803010 Google Scholar
51. Marquier, F., J.- J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Optics Express, Vol. 13/1, 70, 2004. Google Scholar
52. de Ceglia, D., M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, "Plasmonic band edge effects on the transmission properties of metal gratings," AIP Advances, Vol. 1, 032151, 2011.
doi:10.1063/1.3638161 Google Scholar
53. Collin, S., "Nanostructure arrays in free-space: Optical properties and applications," Reports on Progress in Physics, Vol. 77, 126402, 2014.
doi:10.1088/0034-4885/77/12/126402 Google Scholar
54. Wood, R. W., "Anomalous diffraction gratings," Physical Review, Vol. 15, 928, 1935.
doi:10.1103/PhysRev.48.928 Google Scholar
55. Hessel, A. and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Applied Optics, Vol. 4/10, 1275-1297, 1965.
doi:10.1364/AO.4.001275 Google Scholar
56. Sarrazin, M., J.-P. Vigneron, and J.-M. Vigoureux, "Role ofWood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Physical Review B, Vol. 67, 085415, 2003.
doi:10.1103/PhysRevB.67.085415 Google Scholar
57. Philpot, M. R. and J. D. Swalen, "Exciton surface polaritons on organic crystals," The Journal of Chemical Physics, Vol. 69, No. 6, 2912, 1978.
doi:10.1063/1.436890 Google Scholar
58. Welford, K. R., "Surface plasmon-polaritons," IOP Short Meeting Series, Vol. 9, 25, 1988. Google Scholar
59. Yang, F., J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Physical Review B, Vol. 44, 5855, 1991.
doi:10.1103/PhysRevB.44.5855 Google Scholar
60. Sarrazin, M. and J.-P. Vigneron, "Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array," Physical Review, Vol. 71, 075404, 2005.
doi:10.1103/PhysRevB.71.075404 Google Scholar
61. Weiner, J., "The physics of light transmission through subwavelength apertures and aperture arrays," Reports on Progress in Physics, Vol. 72, 064401, 2009.
doi:10.1088/0034-4885/72/6/064401 Google Scholar
62. Torma, P. and W. L. Barnes, "Strong coupling between surface plasmon polaritons and emitters: A review," Reports on Progress in Physics, Vol. 78, 013901, 2015.
doi:10.1088/0034-4885/78/1/013901 Google Scholar
63. Fan, R.-H., R.-W. Peng, X.-R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, "Transparent metals for ultrabroadband electromagnetic waves," Advanced Materials, Vol. 24, 1980, 2012.
doi:10.1002/adma.201104483 Google Scholar
64. Sakat, E., G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Hadar, and J.-L. Pelouard, "Free-standing guided-mode resonance band-pass filters: From 1D to 2D structures," Optics Express, Vol. 20/12, 13082, 2012.
doi:10.1364/OE.20.013082 Google Scholar
65. Shen, H. and B. Maes, "Enhanced optical transmission through tapered metallic gratings," Applied Physics Letters, Vol. 100, 241104, 2012.
doi:10.1063/1.4729005 Google Scholar
66. Barbara, A., P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, "Electromagnetic resonances of subwavelength rectangular metallic gratings," The European Physical Journal D, Vol. 23, 143, 2003.
doi:10.1140/epjd/e2003-00025-9 Google Scholar
67. Tan, W.-C., J. R. Sambles, and T. W. Preist, "Double-period zero-order metal gratings as effective selective absorbers," Physical Review B, Vol. 61/19, 13177, 2000.
doi:10.1103/PhysRevB.61.13177 Google Scholar
68. Chan, H. B., Z. Marcet, Kwangje Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, "Optical transmission through double-layer metallic subwavelength slit arrays," Optics Letters, Vol. 31/4, 516, 2006.
doi:10.1364/OL.31.000516 Google Scholar
69. Cheng, C., J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, "Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures," Physics Review B, Vol. 78, 075406, 2008.
doi:10.1103/PhysRevB.78.075406 Google Scholar
70. Barbara, A., S. Collin, Ch. Sauvan, J. Le Perchec, C. Maxime, J.-L. Pelouard, and P. Quémerais, "Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating," Optics Express, Vol. 18/14, 14913, 2010.
doi:10.1364/OE.18.014913 Google Scholar
71. Skigin, D. C. and R. A. Depine, "Narrow gaps of transmission through metallic structured gratings with subwavelength slits," Physics Review E, Vol. 74, 046606, 2006.
doi:10.1103/PhysRevE.74.046606 Google Scholar
72. Csendes, T., B. M. Garay, and B. Bánhelyi, "A verified optimization technique to locate chaotic regions of a Hénon system," Journal of Global Optimization, Vol. 35, 145, 2006.
doi:10.1007/s10898-005-1509-9 Google Scholar