Vol. 88
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-12-04
UWB-Radar-Sensed Human Respiratory Signal Modeling Based on the Morphological Method
By
Progress In Electromagnetics Research C, Vol. 88, 235-249, 2018
Abstract
This paper proposes a morphological ultra-wideband (UWB)-radar-based respiratory signal model. According to the detection theory, it is crucial to set up an appropriate model to fulfil the detection purpose. Previous models pay less attention on the time dimension of the respiratory signal, but the frequency domain cannot precisely describe it because of its non-linearity and non-stationarity. This model uses a morphological operator to dilate or erode the base wavelet, and the length and value of the digit in the structure element serve as the parameters in this morphological model. The result of the experiment carried out on 10 human targets with impulse radio ultra-wideband (IR-UWB) radar proves the efficiency of this model. As the UWB radar sensed human respiratory signal is nonlinear and non-stationary, the parameters in the model can be regarded as a measure of non-linearity and non-stationarity. An experiment is carried out with the simulated respiratory signal generated with the proposed model. The result shows that the detection algorithm based on Ensemble Empirical Mode Decomposition (EEMD) method has a better performance than that based on Adaptive Line Enhancer (ALE) and with the value of the digit in the structure element increases, the performance of the ALE method declines, while the EEMD method stays in a good performance, which indicates that the EEMD method has a good potential to deal with the nonlinear and non-stationary respiratory signal.
Citation
Miao Liu, Hui Jun Xue, Fulai Liang, Hao Lv, Zhao Li, Fu Gui Qi, Ziqi Zhang, and Jianqi Wang, "UWB-Radar-Sensed Human Respiratory Signal Modeling Based on the Morphological Method," Progress In Electromagnetics Research C, Vol. 88, 235-249, 2018.
doi:10.2528/PIERC18092613
References

1. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302

2. Chang, S., N. Mitsumoto, and J. W. Burdick, "An algorithm for UWB radar-based human detection," IEEE Radar Conference, 2009, 1-6, IEEE, Pasadena, CA, USA, May 4–8, 2009.

3. Yarovoy, A. G., L. P. Ligthart, J. Matuzas, and B. Levitas, "UWB radar for human being detection," IEEE Aerospace and Electronic Systems Magazine, Vol. 21, 22-26, 2006.
doi:10.1109/MAES.2006.284354

4. Liu, L., Z. Liu, and B. E. Barrowes, "Through-wall bio-radiolocation with UWB impulse radar: Observation, simulation and signal extraction," IEEE J-STARS, Vol. 4, 791-798, 2011.

5. Li, Z., W. Li, H. Lv, Y. Zhang, X. Jing, and J. Wang, "A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 2086-2092, 2013.
doi:10.1109/TMTT.2013.2247054

6. Liu, M., S. Li, H. Lv, Y. Tian, G. Lu, Y. Zhang, Z. Li, W. Li, X. Jing, and J. Wang, Human Detection Algorithm Based on Bispectrum Analysis for IR-UWB Radar, 674-681, Springer Berlin Heidelberg, 2013.

7. Li, J., L. Liu, Z. Zeng, and F. Liu, "Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, 783-791, 2014.
doi:10.1109/JSTARS.2013.2259801

8. Mabrouk, M., S. Rajan, M. Bolic, I. Batkin, H. R. Dajani, and V. Z. Groza, "Detection of human targets behind the wall based on singular value decomposition and skewness variations," IEEE Radar Conference 2014, 1466-1470, IEEE, Cincinnati, OH, USA, May 19–23, 2014.

9. Sengupta, S. K., Fundamentals of Statistical Signal Processing: Estimation Theory, 465-466, PTR Prentice Hall, 1993.

10. Li, X., D. Qiao, and Y. Li, "An analytical model for regular respiratory signal," Conf. Proc. IEEE Eng. Med. Biol. Soc., 102-105, 2014.

11. Serra, J., Image Analysis and Mathematical Morphology, 536, Academic Press, 1982.

12. Zhang, F. and Y. Lian, "QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks," IEEE Transactions on Biomedical Circuits and Systems, Vol. 3, 220, 2009.
doi:10.1109/TBCAS.2009.2020093

13. Xu, G., J. Wang, Q. Zhang, S. Zhang, and J. Zhu, "A spike detection method in EEG based on improved morphological filter," Computers in Biology and Medicine, Vol. 37, 1647, 2007.
doi:10.1016/j.compbiomed.2007.03.005

14. Dogdas, B., D. W. Shattuck, and R. M. Leahy, "Segmentation of skull and scalp in 3-D human MRI using mathematical morphology," HUM BRAIN MAPP, Vol. 26, 273-285, 2005.
doi:10.1002/hbm.20159

15. Nezirovic, A., A. G. Yarovoy, and L. P. Ligthart, "Experimental study on human being detection using UWB radar," IEEE International Radar Symposium 2006, IRS 2006, 1-4, 2006.

16. Karlen, W., S. Raman, J. M. Ansermino, and G. A. Dumont, "Multiparameter respiratory rate estimation from the photoplethysmogram," IEEE Trans. Biomed. Eng., Vol. 60, 1946-1953, 2013.
doi:10.1109/TBME.2013.2246160

17. Chang, C. and G. H. Glover, "Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI," NEUROIMAGE, Vol. 47, 1381-1393, 2009.
doi:10.1016/j.neuroimage.2009.04.048

18. Lv, H., W. Li, Z. Li, Y. Zhang, T. Jiao, H. Xue, M. Liu, X. Jing, and J. Wang, "Characterization and identification of IR-UWB respiratory-motion response of trapped victims," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, 7195-7204, 2014.
doi:10.1109/TGRS.2014.2309141

19. Lv, H., T. Jiao, Y. Zhang, Q. An, M. Liu, F. Liang, X. Jing, and J. Wang, "An adaptive-MSSA-based algorithm for detection of trapped victims using UWB radar," IEEE Geoscience and Remote Sensing Letters, Vol. 12, 1808-1812, 2015.
doi:10.1109/LGRS.2015.2427835

20. Reddy, V. U. and A. Nehorai, "Response of adaptive line enhancer to a sinusoid in lowpass noise," IEE Proceedings F - Communications, Radar and Signal Processing, Vol. 128, 161-166, 1981.
doi:10.1049/ip-f-1.1981.0026

21. Li, W. Z., Z. Li, H. Lv, G. Lu, Y. Zhang, X. Jing, S. Li, and J. Wang, "A new method for non-line-of-sight vital sign monitoring based on developed adaptive line enhancer using low centre frequency UWB radar," Progress In Electromagnetics Research, Vol. 133, 535-554, 2013.
doi:10.2528/PIER12093002

22. Benesty, J., J. D. Chen, and Y. T. Huang, "Time-delay estimation via linear interpolation and cross correlation," IEEE Transactions on Speech and Audio Processing, Vol. 12, 509-519, 2004.
doi:10.1109/TSA.2004.833008

23. Lei, Y., Z. He, and Y. Zi, "Application of the EEMD method to rotor fault diagnosis of rotating machinery," Mechanical Systems and Signal Processing, Vol. 23, 1327-1338, 2009.
doi:10.1016/j.ymssp.2008.11.005

24. Wu, Z. and N. E. Huang, "Ensemble empirical mode decomposition: A noise-assisted data analysis method," Advances in Adaptive Data Analysis, Vol. 1, 1-41, 2011.
doi:10.1142/S1793536909000047