Vol. 92
Latest Volume
All Volumes
PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-04-27
Orthogonal System of Eigenwaves of an Open Cylindrical Gyrotropic Waveguide Located in Free Space
By
Progress In Electromagnetics Research B, Vol. 92, 91-107, 2021
Abstract
A new method for obtaining an orthogonal system of eigenwaves of an open cylindrical waveguide filled with a gyrotropic medium and located in free space is presented. The advantage of the method is that it enables one to explicitly represent the fields of eigenwaves, which correspond to the discrete and continuous parts of the eigenvalue spectrum of such a guiding structure. Orthogonality relations for the eigenwaves and the procedure of expanding an electromagnetic field in terms of these modal solutions are discussed. The limiting transition from the case of a closed cylindrical waveguide with a perfectly conducting wall and a coaxial cylindrical gyrotropic core to the case of an open waveguide is considered. To illustrate the completeness of the obtained system of eigenwaves, a given field is expanded in terms of the found discrete- and continuous-spectrum waves and then resynthesized by evaluating the corresponding expansion numerically. Perfect coincidence between the initially specified field and the result yielded by this evaluation is demonstrated.
Citation
Vasiliy A. Es'kin, Alexander V. Kudrin, and Nadezhda V. Yurasova, "Orthogonal System of Eigenwaves of an Open Cylindrical Gyrotropic Waveguide Located in Free Space," Progress In Electromagnetics Research B, Vol. 92, 91-107, 2021.
doi:10.2528/PIERB21031003
References

1. Lord Rayleigh, J. W., The Theory of Sound, Macmillan, London, 1894.

2. Sommerfeld, A., "Ueber die fortpflanzung elektrodynamischer wellen langs eines drahtes," Ann. Phys. Chem., Vol. 303, No. 2, 233-290, 1899.
doi:10.1002/andp.18993030202

3. Hondros, D. and P. Debye, "Elektromagnetische wellen an dielektrischen drahten," Ann. Phys., Vol. 337, No. 8, 465-476, 1910.
doi:10.1002/andp.19103370802

4. Marcuvitz, N., "On field representations in terms of leaky modes or eigenmodes," IRE Trans. Antennas Propag., Vol. 4, No. 3, 192-194, 1956.
doi:10.1109/TAP.1956.1144410

5. Angulo, C. and W. Chang, "A variational expression for the terminal admittance of a semi-infinite dielectric rod," IRE Trans. Antennas Propag., Vol. 7, No. 3, 207-212, 1959.
doi:10.1109/TAP.1959.1144673

6. Shevchenko, V. V., Continuous Transitions in Open Waveguides, Golem Press, Boulder, 1971.

7. Manenkov, A. B., "The excitation of open homogeneous waveguides," Radiophys. Quantum Electron., Vol. 13, No. 5, 578-586, 1970.
doi:10.1007/BF01030694

8. Polat, B., "High-frequency scattering from a semi-infinite cylindrical dielectric rod," ZAMM — J. Appl. Math. Mech., Vol. 80, No. 6, 389-398, 2000.
doi:10.1002/1521-4001(200006)80:6<389::AID-ZAMM389>3.0.CO;2-I

9. Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1990.
doi:10.1109/9780470544648

10. Manenkov, A. B., "Propagation of waves in open waveguides with anisotropic dielectrics," Radiophys. Quantum Electron., Vol. 24, No. 1, 60-69, 1981.
doi:10.1007/BF01034355

11. Manenkov, A. B., "Irregular magneto-optical waveguides," IEEE Trans. Microw. Theory Tech., Vol. 29, No. 9, 906-910, 1981.
doi:10.1109/TMTT.1981.1130472

12. Uzunoglu, N. K., P. G. Cottis, and J. G. Fikioris, "Excitation of electromagnetic waves in a gyroelectric cylinder," IEEE Trans. Antennas Propagat., Vol. 33, No. 1, 90-95, 1985.
doi:10.1109/TAP.1985.1143471

13. Kudrin, A. V., V. A. Es’kin, C. Krafft, and T. M. Zaboronkova, "Whistler wave excitation by a loop antenna in a bounded collisional magnetoplasma," Phys. Scr., Vol. 77, No. 5, 055501, 2008.
doi:10.1088/0031-8949/77/05/055501

14. Marcuse, D., "Radiation losses of the dominant mode in round dielectric waveguides," Bell Syst. Tech. J., Vol. 49, No. 8, 1665-1693, 1970.
doi:10.1002/j.1538-7305.1970.tb04284.x

15. Snyder, A. W., "Continuous mode spectrum of a circular dielectric rod," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 8, 720-727, 1971.
doi:10.1109/TMTT.1971.1127613

16. Tigelis, I., C. N. Capsalis, and N. K. Uzunoglu, "Computation of the dielectric rod waveguide radiation modes," Int. J. Infrared Millim. Waves, Vol. 8, No. 9, 1053-1068, 1987.
doi:10.1007/BF01010811

17. Manenkov, A. B., "Orthogonality relations for the eigenmodes of lossy anisotropic waveguides (fibres)," IEE Proc. J, Vol. 140, No. 3, 206-212, 1993.

18. Kondrat’ev, I. G., A. V. Kudrin, and T. M. Zaboronkova, Electrodynamics of Density Ducts in Magnetized Plasmas, Gordon and Breach, Amsterdam, 1999.

19. Kostrov, A. V., A. V. Kudrin, L. E. Kurina, G. A. Luchinin, A. A. Shaykin, and T. M. Zaboronkova, "Whistlers in thermally generated ducts with enhanced plasma density: Excitation and propagation," Phys. Scr., Vol. 62, No. 1, 51-65, 2000.
doi:10.1238/Physica.Regular.062a00051

20. Zaboronkova, T. M., A. V. Kudrin, and M. Yu. Lyakh, "Excitation of nonsymmetric waves by given sources in a magnetoplasma in the presence of a cylindrical plasma channel," Radiophys. Quantum Electron., Vol. 46, No. 5–6, 407-424, 2003.
doi:10.1023/A:1026371902173

21. Boswell, R. W. and F. F. Chen, "Helicons — The early years," IEEE Trans. Plasma Sci., Vol. 25, No. 6, 1229-1244, 1997.
doi:10.1109/27.650898

22. Chen, F. F. and R. W. Boswell, "Helicons — The past decade," IEEE Trans. Plasma Sci., Vol. 25, No. 6, 1245-1257, 1997.
doi:10.1109/27.650899

23. Arnush, D., "The role of Trivelpiece-Gould waves in antenna coupling to helicon waves," Phys. Plasmas, Vol. 7, No. 7, 3042-3050, 2000.
doi:10.1063/1.874157

24. Gurevich, A. G. and G. A. Melkov, Magnetization Oscillations and Waves, CRC Press, Boca Raton, 1996.

25. Kudrin, A. V., E. Yu. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Electromagnetic radiation from sources embedded in a cylindrically stratified unbounded gyrotropic medium," Progress In Electromagnetics Research B, Vol. 12, 297-331, 2009.
doi:10.2528/PIERB08120503

26. Es’kin, V. A. and A. V. Kudrin, "Diffraction of an electromagnetic vortex Bessel beam by the end of a semi-infinite magnetized plasma cylinder," 2017 Progress In Electromagnetics Research Symposium — Spring (PIERS), 1372-1379, St. Petersburg, Russia, May 22–25, 2017.

27. Es’kin, V. A. and A. V. Kudrin, "Diffraction of an electromagnetic Laguerre-Gaussian beam by the end of a semi-infinite gyrotropic cylinder," 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 133-138, Granada, Spain, September 9–13, 2019.

28. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford, 1970.

29. Capolino, F., Theory and Phenomena of Metamaterials, CRC Press, Boca Raton, 2017.
doi:10.1201/9781420054262

30. Abramowitz, M., I. A. Stegun, and eds., Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, Mineola, 1974.

31. Shevchenko, V. V., "On the completeness of spectral expansion of the electromagnetic field in the set of dielectric circular rod waveguide eigenwaves," Radio Sci., Vol. 17, No. 1, 229-231, 1982.
doi:10.1029/RS017i001p00229