Vol. 94
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-01-04
Reliable Nonuniform Discretization Algorithm for Fast and Accurate Hybrid Mode Analysis of Multilayered Planar Transmission Lines
By
Progress In Electromagnetics Research B, Vol. 94, 175-199, 2021
Abstract
A flexible and reliable full-wave modal integral method is proposed to efficiently characterize planar transmission structures printed on multilayered isotropic/anisotropic substrates. Based on the mathematical concept of operators used in electromagnetism, it consists in determining the modal inner products obtained through the Galerkin's procedure via a proper choice of trial functions with metallic edge effects. To this aim, a fast and accurate nonuniform discretization algorithm is introduced for the first time, while using a new process to accelerate the convergence with regard to the number of areas of such inner products, thus significantly reducing the required CPU-time for planar transmission lines analysis. To demonstrate the efficiency of the proposed numerical integral approach, a successful comparison was achieved through a close agreement with published data.
Citation
Abdelhamid Khodja, Mustapha Yagoub, and Rachida Touhami, "Reliable Nonuniform Discretization Algorithm for Fast and Accurate Hybrid Mode Analysis of Multilayered Planar Transmission Lines," Progress In Electromagnetics Research B, Vol. 94, 175-199, 2021.
doi:10.2528/PIERB21100902
References

1. Khodja, A., D. Abbou, M. C. E. Yagoub, R. Touhami, and H. Baudrand, "Novel dispersive modal approach for fast analysis of asymmetric coplanar structures on isotropic/anisotropic substrates," Journal of Electromagnetic Wave and Applications, Vol. 28, No. 12, 1522-1540, Francis and Taylor, Jul. 2014.
doi:10.1080/09205071.2014.932260

2. Wang, Y., J. Wang, L. Yao, and W. Y. Yin, "A hybrid method based on leapfrog ADI-FDTD and FDTD for solving multiscale transmission line network," IEEE Journal on Multiscale and Multiphysics Computational Tech., Vol. 5, 273-280, Dec. 2020.
doi:10.1109/JMMCT.2020.3046273

3. Yang, Y., X. C. Li, Y. Li, and J. Mao, "A compact 2-D stochastic FDTD method for uncertainty analysis in superconducting transmission lines," IEEE Trans. Applied Superconductivity, Vol. 30, No. 8, 1-7, Dec. 2020.

4. Gansen, A., M. El Hachemi, S. Belouettar, O. Hassan, and K. Morgan, "A 3D unstructured mesh FDTD scheme for EM modelling," Archives of Comp. Method In Eng., Vol. 28, 181-213, Springer, Jan. 2020.

5. Tounsi, M. L., R. Touhami, A. Khodja, and M. C. E. Yagoub, "Analysis of the mixed coupling in bilateral microwave circuits including anisotropy for MICs and MMICs applications," Progress In Electromagnetics Research, Vol. 62, 281-315, 2006.
doi:10.2528/PIER06020601

6. Daoudi, S., F. Benabdelaziz, C. Zebiri, and D. Sayad, "Generalized exponential matrix technique application for the evaluation of the dispersion characteristics of a chiro-ferrite shielded multilayered microstrip line," Progress In Electromagnetics Research M, Vol. 61, 1-14, 2017.
doi:10.2528/PIERM17082107

7. Sayad, D., C. Zebiri, I. Elfergani, J. Rodrigez, H. Abobaker, A. Ullah, R. Abdalhameed, I. Otung, and F. Benabdelaziz, "Complex bianisotropy effect on the propagation constant of a shielded multilayered coplanar waveguide using improving full generalized exponential matrix technique," J. Electronics, Vol. 9, No. 2, 1-18, Feb. 2020.

8. Molina, C. G., F. Q. Pereira, A. A. Melcon, V. E. Boria, and M. Guglielmi, "An efficient technique to assess the convergence of the multimode equivalent network for waveguide devices," IEEE Trans. Microwave Theory Tech., Vol. 66, 651-659, Jan. 2018.
doi:10.1109/TMTT.2017.2785837

9. Molina, C. G., F. Q. Pereira, A. A. Melcon, S. Marini, M. A. S. Soriano, V. E. Boria, and M. Guglielmi, "Multimode equivalent network for boxed multilayer arbitrary planar circuits," IEEE Trans. Microwave Theory Tech., Vol. 68, 2501-2514, Jul. 2020.

10. Baudrand, H., H. Aubert, D. Bajon, and F. Bouzidi, "Equivalent network representation of boundary conditions involving generalized trial quantities," Annales des Telecom., Vol. 52, No. 5-6, 285-292, May/Jun. 1997.
doi:10.1007/BF02996071

11. Baudrand, H. and D. Bajon, "Equivalent circuit representation for integral formulations of electromagnetic problems," Intern. Journal of Num. Modelling: Electronic Networks, Devices and Fields, Vol. 15, No. 1, 23-57, Wiley, Jan/Feb. 2002.
doi:10.1002/jnm.430

12. Zeid, A. and H. Baudrand, "Electromagnetic scattering by metallic holes and its applications in microwave circuit design," IEEE Trans. Microwave Theory Tech., Vol. 50, 1198-1206, Apr. 2002.
doi:10.1109/22.993425

13. Bouzidi, F., H. Aubert, D. Bajon, and H. Baudrand, "Equivalent network representation of boundary conditions involving generalized trial quantities-application to lossy transmission lines with finite metallization thickness," IEEE Trans. Microwave Theory Tech., Vol. 45, 869-876, Jun. 1997.
doi:10.1109/22.588594

14. Khodja, A., M. C. E. Yagoub, R. Touhami, and H. Baudrand, "Efficient characterization of millimeter-wave asymmetric coupled microstrip structures using the quasi-symmetric approach," Int. J. RF and Microwave Computer-Aided Engineering, Vol. 23, 527-538, Wiley, Sep. 2013.

15. Aubrion, M., H. Aubert, M. Ahmadpanah, and H. Baudrand, "Analysis of discontinuous-layer propagation structures by transverse resonance method," Electronics Letters, Vol. 29, No. 24, 2086-2087, Nov. 1993.
doi:10.1049/el:19931393

16. Aubert, H. and H. Baudrand, L'Electromagnetisme par Les Schemas Equivalents [Electromagnetism by Equivalent Circuits], Toulouse, 2003.

17. Khodja, A., Contribution a la modelisation des circuits planaires multicouches symetriques/asymetriques par une methode integrale dans le domaine modal [Contribution in the modeling of symmetrical/asymmetrical multilayer planar circuits by modal integral method], Ph.D. thesis, USTHB, Algiers, Algeria, Oct. 2017.

18. Khodja, A., M. C. E. Yagoub, R. Touhami, and H. Baudrand, "Advanced recursive modal integral technique for accurate hybrid mode characterization of symmetrical/asymmetrical multilayered uniaxial anisotropic planar structures," Journal of Electromagnetic Wave and Applications, Vol. 35, No. 18, 2397-2427, Francis and Taylor, Jul. 2021.
doi:10.1080/09205071.2021.1951362

19. Pujol, S., H. Baudrand, and V. F. Hanna, "A complete description of a source-type method for modeling planar structures," Ann. de Telecom., Vol. 48, No. 9-10, 459-470, Sept./Oct. 1993.
doi:10.1007/BF02995474

20. Nadarassin, M., H. Aubert, and H. Baudrand, "Analysis of planar structures by an integral approach using entire domain trial functions," IEEE Trans. Microwave Theory Tech., Vol. 43, 2492-2495, Oct. 1995.

21. Grayaa, K., T. Aguili, H. Baudrand, and A. Bouallegue, "Characterization of planar passive circuits using source method and different trial functions," IEE. Proc. Microw. Antennas and Propag., Vol. 146, 209-213, Jun. 1999.
doi:10.1049/ip-map:19990628

22. Aubert, H., B. Souny, and H. Baudrand, "Origin and avoidance of spurious solutions in the transverse resonance method," IEEE Trans. Microwave Theory Tech., Vol. 41, 450-456, Mar. 1993.
doi:10.1109/22.223744

23. Khodja, A., Optimisation des fonctions d'essai dans la modelisation de la ligne a ailettes unilaterale par la methode de resonance transverse [Optimization of trial functions in the modeling of unilateral finline structure by the transverse resonance method], Magister thesis, USTHB, Algiers, Algeria, Apr. 2000.

24. Souny, B., H. Aubert, and H. Baudrand, "Elimination of spurious solutions in the calculation of eigenmodes by moment method," IEEE Trans. Microwave Theory Tech., Vol. 44, 154-157, Jan. 1996.
doi:10.1109/22.481398

25. Khodja, A., M. C. E. Yagoub, R. Touhami, and H. Baudrand, "Advanced full-wave integral method for accurate analysis of transmission planar circuits: Application to finline structures," IEEE Int. Conf. on Ultra-Wideband, 345-350, Paris, France, Sep. 2014.

26. Khodja, A., M. C. E. Yagoub, R. Touhami, and H. Baudrand, "Improved numerical modal technique for fast and accurate modeling of transmission planar structures: Application to microstrip line," Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, 1-4, Istanbul, Turkey, Sep. 2015.

27. Radi, B. and A. El-Hami, Advanced Numerical Methods with MatlabR 1, Vol. 6, ISTE Ltd and J. Wiley, 2018.

28. Shalaby, A. T. K. and A. Kumar, "Dispersion in unilateral finlines on anisotropic substrates," IEEE Trans. Microwave Theory Tech., Vol. 35, 448-450, Apr. 1987.
doi:10.1109/TMTT.1987.1133669

29. Marques, R. and M. Horno, "On the spectral dyadic Green's function for strati ed linear media. Application to multilayer MIC lines with anisotropic dielectrics," IEE Proceedings H (Microwaves, Antennas and Propagation), Vol. 134, No. 3, 241-248, Jun. 1987.
doi:10.1049/ip-h-2.1987.0045

30. Nakatani, A. and N. Alexopoulos, "Toward a generalized algorithm for the modeling of the dispersive properties of integrated circuit structures on anisotropic substrates," IEEE Trans. Microwave Theory Tech., Vol. 33, 1436-1441, Dec. 1985.
doi:10.1109/TMTT.1985.1133236

31. Kitazawa, T. and R. Mittra, "Analysis of asymmetric coupled striplines," IEEE Trans. Microwave Theory Tech., Vol. 33, 643-646, Jul. 1985.

32. Maze, G., S. Tedjini, and J. L. Bonnefoy, "Analysis of a CPW on electric and magnetic biaxial substrate," IEEE Trans. Microwave Theory and Tech., Vol. 41, 457-461, Mar. 1993.
doi:10.1109/22.223745

33. Schmidt, L. P., T. Itoh, and H. Hofmann, "Characteristics of unilateral fin-line structures with arbitrarily located slots," IEEE Trans. Microwave Theory Tech., Vol. 29, 352-355, Apr. 1981.
doi:10.1109/TMTT.1981.1130357