1. Lindell, I. V., Methods for Electromagnetic Field Analysis, Clarendon Press, 1992.
2. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.
3. Hegstrom, R. A. and D. K. Kondepudi, "The handedness of the universe," Scientific American, No. 1, 98-105, 1990. Google Scholar
4. Gardner, M., The Ambidextrous Universe, Allen Lane, 1967.
5. Hargittai, I. and C. A. Pickover (eds.), Spiral Symmetry, World Scientific, 1992.
6. Moses, H. E., "Eigenfunctions of the curl operator; rotationally invariant Helmholtz theorem, and applications to electromagnetic theory and fluid mechanics," SIAM Journal of Applied Mathematics, Vol. 21, No. 1, 1971.
doi:10.1137/0121015 Google Scholar
7. Waleffe, F., "The nature of triad interactions in homogeneous turbulence," Physics of Fluids A, Vol. 4, No. 2, 1992. Google Scholar
8. MacLeod, M. A., "The spherical curl transform of a linear forcefree magnetic field," Journal of Mathematical Physics, Vol. 39, No. 3, 1998.
doi:10.1063/1.532305 Google Scholar
9. MacLeod, M. A., "A new description of force-free magnetic field," Journal of Mathematical Physics, Vol. 36, No. 6, 1995.
doi:10.1063/1.531003 Google Scholar
10. Constantin, P. and A. Majda, "The Beltrami spectrum for incompressible fluid flows," Communications in Mathematical Physics, Vol. 115, 435-456, 1998.
doi:10.1007/BF01218019 Google Scholar
11. Dahl, M., "Contact and symplectic geometry in electromagnetism," Master's thesis, 2002. Google Scholar
12. Arnold, V. I. and B. A. Keshin, "Topological methods in hydrodynamics," Applied Mathematical Sciences, 1998. Google Scholar
13. Baldwin, P. R. and G. M. Townsend, "Complex Trkalian fields and solutions to Euler's equations for the ideal fluid," Physical Review E, Vol. 51, No. 3, 2059-2068, 1995.
doi:10.1103/PhysRevE.51.2059 Google Scholar
14. Tsui, K. H., "Force-free field model of ball lightning," Physics of Plasmas, Vol. 8, No. 3, 687-689, 2001.
doi:10.1063/1.1343511 Google Scholar
15. Bellan, P. M., Spheromaks, A practical Application ofMagnetohydrodynamic Dynamos and Plasma Self-Organization, 2000.
16. Reed, D., Foundational Electrodynamics and Beltrami fields in in Advanced Electromagnetism: Foundations, Theory, and Applications, 1995.
17. Lakhtakia, A., Beltrami fields in Chiral Media, World Scientific, 1994.
18. Etnyre, J. and R. Ghrist, "Contact topology and hydrodynamics.," Nonlinearity, Vol. 13, No. 2, 441-458, 2000.
doi:10.1088/0951-7715/13/2/306 Google Scholar
19. Stein, E. M. and G. Weiss, Introduction to Fourier Analysis on Euclidian Spaces, Princeton University Press, 1971.
20. Van Bladel, J., "A discussion on Helmholtz' theorem," Electromagnetics, Vol. 13, 95-110, 1993. Google Scholar
21. McDuff, D. and D. Salamon, Introduction to Symplectic Topology, Clarendon Press, 1997.
22. Madsen, I. and J. Tornehave, From Calculus to Cohomology, Cambridge University Press, 1997.
23. Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 1986.
24. Frankel, T., Geometry ofPhysics, Cambridge University Press, 1997.
25. Thirring, W., A Course in Mathematical Physics 2: Classical Field Theory, Springer-Verlag, 1978.
doi:10.1016/S0723-0869(01)80014-1
26. Geiges, H., "A brief history of contact geometry and topology," Expositiones Mathematicae, Vol. 19, 25-53, 2001.
doi:10.1016/S0723-0869(01)80014-1 Google Scholar
27. Bellaïche, A. and J-J. Risler (eds.), Sub-Riemannian Geometry, Birkhäuser, 1996.
doi:10.1016/S0926-2245(02)00059-1
28. Beltran, J. V., "Star calculus on Jacobi manifolds," Differential Geometry and Its Applications, Vol. 16, 181-198, 2002.
doi:10.1016/S0926-2245(02)00059-1 Google Scholar