PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 46 > pp. 265-312

A GENERAL FRAMEWORK FOR CONSTRAINT MINIMIZATION FOR THE INVERSION OF ELECTROMAGNETIC MEASUREMENTS

By T. M. Habashy and A. Abubakar

Full Article PDF (311 KB)

Abstract:
In this paper, we developed a general framework for the inversion of electromagnetic measurements in cases where parametrization of the unknown configuration is possible. Due to the ill-posed nature of this nonlinear inverse scattering problem, this parametrization approach is needed when the available measurement data are limited and measurements are only carried out from limited transmitter-receiver positions (limited data diversity). By carrying out this parametrization, the number of unknown model parameters that need to be inverted is manageable. Hence the Newton based approach can advantageously be used over gradient-based approaches. In order to guarantee an error reduction of the optimization process, the iterative step is adjusted using a line search algorithm. Further unlike the most available Newton-based approaches available in the literature, we enhanced the Newton based approaches presented in this paper by constraining the inverted model parameters with nonlinear transformation. This constrain forces the reconstruction of the unknown model parameters to lie within their physical bounds. In order to deal with cases where the measurements are redundant or lacking sensitivity to certain model parameters causing non-uniqueness of solution, the cost function to be minimized is regularized by adding a penalty term. One of the crucial aspects of this approach is how to determine the regularization parameter determining the relative importance of the misfit between the measured and predicted data and the penalty term. We reviewed different approaches to determine this parameter and proposed a robust and simple way of choosing this regularization parameter with aid of recently developed multiplicative regularization analysis. By combining all the techniques mentioned above we arrive at an effective and robust parametric algorithm. As numerical examples we present results of electromagnetic inversion at induction frequency in the deviated borehole configuration.

Citation: (See works that cites this article)
T. M. Habashy and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702
http://www.jpier.org/pier/pier.php?paper=0310072

References:
1. Tarantola, A., Inverse Problem Theory, Elsevier, Amsterdam, 1987.

2. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

3. Abubakar, A. and P. M. van den Berg, "Three dimensional nonlinear inversion in cross-well electrode logging," Radio Science, Vol. 33, No. 4, 989-1004, 1998.
doi:10.1029/98RS00975

4. Abubakar, A., P. M. van den Berg, and B. J. Kooij, "A conjugate gradient contrast source technique for 3D profile inversion," IEICE Transactions on Electronics, 1864-1877, 2000.

5. Abubakar, A., P. M. van den Berg, and S. Y. Semenov, "Two-and three-dimensional algorithms for microwave imaging and inverse scattering," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 209-231, 2003.
doi:10.1163/156939303322235798

6. Barkeshli, S. and R. G. Lautzenheiser, "An iterative method for inverse scattering problems based on an exact gradient search," Radio Science, Vol. 29, 1119-1130, 1994.
doi:10.1029/94RS00830

7. Chew, W. C. and Y. M. Wang, "Reconstruction of twodimensional permittivity distribution using the distorted Born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, 218-225, 1990.
doi:10.1109/42.56334

8. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, 1596-1607, 2001.
doi:10.1109/36.934091

9. Kleinman, R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," Journal of Computational and Applied Mathematics, Vol. 42, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y

10. Liu, Q. H. and W. C. Chew, "Applications of the CG-FFHT method with an improved FHT algorithm," Radio Science, Vol. 29, 1009-1022, 1994.
doi:10.1029/93RS03592

11. Zhdanov, M. S. and G. Hursan, "3D electromagnetic inversion based on quasi-analytical approximation," Inverse Problems, Vol. 16, 1297-1322, 2000.
doi:10.1088/0266-5611/16/5/311

12. Van den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of art," Progress in Electromagnetics Research, Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103

13. Van den Berg, P. M., A. Abubakar, and J. T. Fokkema, "Multiplicative regularization for contrast profile inversion," Radio Science, Vol. 38, No. 2, 1-23, 2003.
doi:10.1029/2001RS002555

14. Franchois, A. and C. Pichot, "Microwave imaging — Complex permittivity reconstruction with Levenberg-Marquardt method," IEEE Transactions on Antennas and Propagation, Vol. 45, 203-215, 1997.
doi:10.1109/8.560338

15. Habashy, T. M., M. L. Oristaglio, and A. T. de Hoop, "Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity," Radio Science, Vol. 29, 1101-1118, 1994.
doi:10.1029/93RS03448

16. Dennis Jr., J. E. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Inc., New Jersey, 1983.

17. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London, 1981.

18. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, London, 1993.

19. Habashy, T. M., W. C. Chew, and E. Y. Chow, "Simultaneous reconstruction of permittivity and conductivity profiles in a radially inhomogeneous slab," Radio Science, Vol. 21, 635-645, 1986.

20. Oldenburg, D. W., "Inversion of electromagnetic data: An overview of new techniques," Surveys in Geophysics, Vol. 11, 231-270, 1990.
doi:10.1007/BF01901661

21. Press, W. H., S. A. Teukol, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 77, Cambridge University Press, England, 1992.

22. Fletcher, R., Practical Methods of Optimization: Volume I, Unconstrained Optimization, Wiley, 1980.

23. Luenberger, D. G., Linear and Nonlinear Programming, Addison- Wesley, Reading, MA, 1984.

24. Rudin, L., S. Osher, and C. Fatemi, "Nonlinear total variation based on noise removal algorithm," Physica, Vol. 30D, 259-268, 1992.

25. Chan, T. F. and C. K. Wong, "Total variation blind deconvolution," IEEE Transactions on Image Processing, Vol. 7, 370-375, 1998.
doi:10.1109/83.661187

26. Broyden, C. G., Mathematics of Computation, Vol. 19, 577-593, Vol. 19, 577-593, 1965.

27. Scharf, L. L., Statistical Signal Processing, Detection, Estimation, and Time Series Analysis, Addison-Wesley Publishing Company, Massachusetts, 1991.

28. Druskin, V., L. A. Knizhnerman, and P. Lee, "New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry," Geophysics, Vol. 64, No. 3, 701-706, 1999.
doi:10.1190/1.1444579

29. Van der Horst, M., V. Druskin, and L. Knizhnerman, "Modeling induction logs in 3D geometres," Three-Dimensional Electromagnetics, 611-622, 1999.

30. Anderson, B. I., T. D. Barber, and T. M. Habashy, The interpretation and inversion of fully triaxial induction data; A sensitivity study, SPWLA 43rd Annual Logging Symposium, 2-5, 2003.

31. Spies, B. R. and T. M. Habashy, "Sensitivity analysis of crosswell electromagnetics," Geophysics, Vol. 60, No. 3, 834-845, 1995.
doi:10.1190/1.1443821

32. Anderson, B. I., S. Bonner, M. Luling, and R. Rosthal, "Response of 2-MHz LWD resistivity and wireline induction tools in dipping beds and laminated formations," The Log Analyst, Vol. 33, No. 5, 461-475.

33. Habashy, T. M. and M. G. Luling, "A point magnetic dipole radiator in a layered, TI-Anisotropic medium," Schlumberger-Doll Research Note, 001-94, 1994.


© Copyright 2014 EMW Publishing. All Rights Reserved