Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 47-80


By G. Gao, C. Torres-Verdin, and T. M. Habashy

Full Article PDF (377 KB)

The Dyadic Green's function is in general viewed as a generalized, or distribution function. A commonly used procedure to evaluate its volume integral is the principal-volume method, in which an infinitesimal volume around the singularity is excluded from the integration volume. In this paper, we develop a general analytical technique to evaluate the integral of the dyadic Green's function without the need to specify an exclusion volume.

The newly derived expressions accurately integrate the singularity and can be used for integration over any shape of spatial discretization cell. We derive explicit expressions for the integral of the 3D dyadic Green's function over a sphere and over a general rectangular block. Similar expressions are obtained for the 2D dyadic Green's function over a cylinder and over a general rectangular cell. It is shown that using the integration technique described in this paper for spherical/circular cells, simple analytical expressions can be derived, and these expressions are exactly the same as those obtained using the principal-volume method. Furthermore, the analytical expressions for the integral of the dyadic Green's function are valid regardless of the location of the observation point, both inside and outside the integration domain. Because the expressions only involve surface integrals/line integrals, their evaluation can be performed very efficiently with a high degree of accuracy. We compare our expressions against the equivalent volume approximation for a wide range of frequencies and cell sizes. These comparisons clearly show the efficiency and accuracy of our technique.

It is also shown that the cubic cell (3D) and the square cell (2D) can be approximated with an equivalent spherical cell and circular cell, respectively, over a wide range of frequencies. The approximation can be performed analytically, and the results can be written as the value of the dyadic Green's function at the center multiplying a "geometric factor". We describe analytical procedures to derive the corresponding geometric factors.

Citation: (See works that cites this article)
G. Gao, C. Torres-Verdin, and T. M. Habashy, "Analytical Techniques to Evaluate the Integrals of 3D and 2D Spatial Dyadic Green's Functions," Progress In Electromagnetics Research, Vol. 52, 47-80, 2005.

1. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green's functions," IEEE Trans. Antennas Propagat., Vol. 37, 1322-1327, 1989.

2. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IEEE Trans. Antennas Propagat., Vol. 9, 563-566, 1961.

3. Yaghjian, A. D., "Electric dyadic Green's functions in the source region," Proc. IEEE, Vol. 68, 248-263, 1980.

4. Yaghjian, A. D., "A delta-distribution derivation of the electric field in the source region," Electromagn., Vol. 2, 161-167, 1982.

5. Su, C. C., "A simple evaluation of some principal value integrals for dyadic Green's function using symmetry property," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 11, 1306-1307, 1987.

6. Lee, S. W., J. Boersma, C. L. Law, and G. A. Deschamps, "Singularity in Green's function and its numerical evaluation," IEEE Trans. Antennas Propagat., Vol. 28, 311-317, 1980.

7. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

8. Livesay, D. E. and K.-M. Chen, "Electromagnetic fields induced inside arbitrarily shaped biological bodies," IEEE Trans. Microwave Theory Tech., Vol. MTT-22, No. 12, 1273-1280, 1974.

9. Fang, S., G. Gao, and C. Torres-Verdín, "Efficient 3-D electromagnetic modeling in the presence of anisotropic conductive media using integral equations," Proceedings of the Third International Three-Dimensional Electromagnetics (3DEM-3) Symposium, 3, 2003.

10. Gao, G., S. Fang, and C. Torres-Verdín, "A new approximation for 3D electromagnetic scattering in the presence of anisotropic conductive media," Proceedings of the Third International Three-Dimensional Electromagnetics (3DEM-3) Symposium, 2003.

11. Gao, G., C. Torres-Verdín, and S. Fang, "Fast 3D modeling of borehole induction data in dipping and anisotropic formations using a novel approximation technique," Petrophysics, Vol. 45, 335-349, 2004.

12. Hohmann, G. W., "Three-dimensional induced polarization and electromagnetic modelling," Geophysics, Vol. 40, No. 2, 309-324, 1975.

13. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

14. Hoekstra, A., J. Rahola, and P. Sloot, "Accuracy of internal fields in volume integral equation simulations of light scattering," Applied Optics, Vol. 37, No. 36, 1998.

15. Torres-Verdín, C. and T. M. Habashy, "Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation," Radio Science, Vol. 29, No. 4, 1051-1079, 1994.

16. Habashy, T. M., R. W. Groom, and B. Spies, "Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering," J. Geophys. Res., Vol. 98, No. B2, 1759-1775, 1993.

© Copyright 2014 EMW Publishing. All Rights Reserved