PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 63 > pp. 89-105

RIGOROUS FULL VECTORIAL ANALYSIS OF ELECTROMAGNETIC WAVE PROPAGATION IN 1D

By J.-A. Martinez-Rojas, J. Alpuente-Hermosilla, J. Piñeiro, and R. Sanchez-Montero

Full Article PDF (170 KB)

Abstract:
We propose a new approach to solve the problem of the propagation of electromagnetic waves in unidimensional media with an arbitrary variation of their dielectric permittivity. This method is deduced from the Maxwell equations with a minimum of approximations and allows a full vectorial description of both the electric and magnetic fields through the direct calculation of their Cartesian coordinates.The problem is then equivalent to the solution of a pair of uncoupled ordinary differential equations. We use a very intuitive, highly accurate, pseudospectral technique to solve these equations. This pseudospectral method is based in a combination of Fourier and polynomial expansions of the solution providing very good precision and excellent stability with a relatively low computational effort. We present a simple model of a photonic crystal as an example of application of this technique to real electromagnetic problems.

Citation: (See works that cites this article)
J.-A. Martinez-Rojas, J. Alpuente-Hermosilla, J. Piñeiro, and R. Sanchez-Montero, "Rigorous Full Vectorial Analysis of Electromagnetic Wave Propagation in 1D," Progress In Electromagnetics Research, Vol. 63, 89-105, 2006.
doi:10.2528/PIER06042501
http://www.jpier.org/PIER/pier.php?paper=06042501

References:
1. Brown, G., S. and R. S. Awadallah, "A Luneburg-Kline representation for wave propagation in a continuously inhomogenous medium," IEEE Trans. Antennas Propag., Vol. 46, No. 12, 1998.
doi:10.1109/8.743839

2. Rao, B. and L. Carin, "A hybrid (Parabolic Equation)- (Gaussian Beam) Algorithm for wave propagation through large inhomogenous regions," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 1998.
doi:10.1109/8.668911

3. Tsang, L., Huang, C., Chan, and C. H., "Surface electric fields and impedance matrix elements of stratified media," IEEE Trans. Antennas Propag., Vol. 48, No. 10, 2000.

4. Kim, K. and H. Lim, "Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals," J. Korean Phys. Soc., Vol. 39, 2001.

5. Okhmatovski, V.I.and A.C. Cangellaris, "A new technique for the derivation of closed-form electromagnetic Green's functions for unbounded planar layered media," IEEE Trans. Antennas Propag., Vol. 50, No. 7, 2002.
doi:10.1109/TAP.2002.800731

6. Wang, Y., S. K. Chaudhuri, and S. Safavi-Naeini, "An FDTD/ray-tracing analysis method for wave penetration through inhomogenous walls," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 2002.

7. Einziger, P. D., L. M. Livshitz, and J. Mizrahi, "Rigorous imagederies expansions of quasi-static Green's functions for regions with planar stratification," IEEE Trans. Antennas Propag., Vol. 50, No. 12, 2002.
doi:10.1109/TAP.2002.807365

8. Bass, F. and L.Resnick, "Wave beam propagation in layered media," J. Electromagn. Waves Appl., Vol. 17, No. 3, 479-480, 2003.
doi:10.1163/156939303767868964

9. Hanson, G. W., A. I. Nosich, and E. M. Kartchevski, "Green's function expansions in dyadic root functions for shielded layered waveguides," J. Electromagn. Waves Appl., Vol. 17, No. 5, 759-761, 2003.
doi:10.1163/156939303322226455

10. Yla-Oijala, P.and M.T askinen, "Efficient formulation of closed form Green's functions for general electric and magnetic sources in multilayered media," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 2003.

11. Vegni, L., A. Toscano, and F. Bilotti, "Shielding and radiation characteristics of planar layered inhomogeneous composites," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2003.
doi:10.1109/TAP.2002.802099

12. Grzegorsczyk, T. M. and J. R. Mosig, "Full-wave analysis of antennas containing horizontal and vertical metallizations embedded in planar multilayered media," IEEE Trans. Antennas Propag., Vol. 51, No. 11, 2003.

13. Hashish, E. A., "Forward and inverse scattering from an inhomogeneous dielectric slab," J. Electromagn. Waves Appl., Vol. 17, No. 5, 719-736, 2003.
doi:10.1163/156939303322226374

14. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using Taylor's series expansion," J. Electromagn. Waves Appl., Vol. 20, No. 8, 1093-1100, 2006.
doi:10.1163/156939306776930286

15. Zhou, X., "Physical Spline Finite Element (PSFEM) solutions to one dimensional electromagnetic problems," J. Electromagn. Waves Appl., Vol. 17, No. 8, 1159-1160, 2003.
doi:10.1163/156939303322519784

16. Vrancken, M.and G.A.E.V andenbosch, "Reference forms of the complete spectral electric and magnetic Dyadic Green's Functions (DGF's) for planar stratified media," J. Electromagn. Waves Appl., Vol. 18, No. 8, 1085-1104, 2004.
doi:10.1163/1569393042955351

17. Tong, M. S., Y. Lu, Y. Chen, H.-S. Kim, T. G. Chang, K.Kagoshima, and V.Krozer, "Study of stratified dielectric slab medium structures using Pseudo-spectral Time Domain (PSTD) Algorithm," J. Electromagn. Waves Appl., Vol. 19, No. 6, 721-736, 2005.
doi:10.1163/1569393054069064

18. Tsai, W., S. Chao, and M. Wu, "Variational analysis of singlemode inhomogeneous planar optical waveguide," J. Electromagn. Waves Appl., Vol. 17, No. 8, 1225-1235, 2003.
doi:10.1163/156939303322519847

19. Brenger J.-P., "Reduction of the angular dispersion of the FDTD method in the earth-ionosphere waveguide," J. Electromagn. Waves Appl., Vol. 17, No. 8, 1225-1235, 2003.
doi:10.1163/156939303322519847

20. Saadatmandi, A., M. Razzaghi, and M. Dehghan, "Sinccollocation methods for the solution of Hallen's integral equation," J. Electromagn. Waves Appl., Vol. 19, No. 2, 245-256, 1995.
doi:10.1163/1569393054497258

21. Chew, W. C., Waves and Fields in Inhomogenous Media, IEEE Press, 1995.

22. Sakoda, K., Optical Properties of Photonic Crystals, Springer, 2001.

23. Tsang, L., J. A. Kong, and K. Ding, Scattering of Electromagnetic Waves: Theories and Applications, John Wiley & Sons, 2000.

24. Kawano, K. and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation, John Wiley & Sons, 2001.

25. Zwillinger, D., Handbook of Differential Equations, 3rd edition, Academic Press, 1997.

26. Boyd, J. P., Chebyshev and Fourier Spectral Methods, 2nd edition, Dover Publishers, New York, 2001.

27. Maxima computer algebra system, version 5.9.3, http://maxima. sourceforge.net/..


© Copyright 2014 EMW Publishing. All Rights Reserved