PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 64 > pp. 239-255

MIXED FAULT DIAGNOSIS IN THREE-PHASE SQUIRREL-CAGE INDUCTION MOTOR USING ANALYSIS OF AIR-GAP MAGNETIC FIELD

By J. Faiz and B. M. Ebrahimi

Full Article PDF (326 KB)

Abstract:
In this paper fault diagnosis of induction motor under mixed fault is carried out using precise analysis of the air-gap magnetic field based on time stepping finite element method. By feeding voltage instead of current density to the finite element computation part, the drawbacks of the application of finite element method in fault diagnosis of induction motor are overcome. Normally static eccentricity and broken rotor bars faults have been individually diagnosed in the published papers. Here diagnosis of the mixed fault,including static eccentricity and broken rotor bars,is introduced which is considered as a novel part of the present work. Precise analysis of magnetic field in the air-gap of a faulty induction motor is carried and performance of the motor is predicted. Taking into account the magnetic core saturation is another advantage of the present work. This is required in the transient analysis of a faulty motor.

Citation:
J. Faiz and B. M. Ebrahimi, "Mixed Fault Diagnosis in Three-Phase Squirrel-Cage Induction Motor Using Analysis of Air-Gap Magnetic Field," Progress In Electromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201
http://www.jpier.org/PIER/pier.php?paper=06080201

References:
1. Fiser, R., "Application of a finite element method to predict damage induction motor performance," IEEE Transactions on Magnetic, Vol. 37, No. 5, 3635-3639, 2001.
doi:10.1109/20.952679

2. Trzynadlosky, A. M., Diagnostic of mechanical abnormalities in induction motor using instantaneous electrical power, Proceedings of The 1997 International Electric Machines and Drives Conference, 91-93, 1997.

3. Elkasabgy, N. M., A. R. Eastman, and G. E. Dawson, "Detection of broken bars in the cage rotor on an induction machine," IEEE Transactions on Industry Application, Vol. IA-22, No. 6, 165-171, 1992.
doi:10.1109/28.120226

4. Toliyat, H. A., M. M. Rahimian, S. Bhattacharya, and T. A. Lipo, Transient analysis of induction machines under internal faults using winding functions, 3rd International Conference on Electrical Rotating Machines-ELROMA, 1992.

5. Toliyat, H. A. and T. A. Lipo, "T ransient analysis of cage induction machines under stator,rotor bar and end ring faults," IEEE Trans. Energy Conversion, Vol. 10, No. 2, 241-247, 1995.
doi:10.1109/60.391888

6. Joksimovic, G. M., M. D. Durovic, J. Penman, and N. Arthur, "Dynamic simulation of dynamic eccentricity in induction machines-winding function approach," IEEE Trans. Energy Conversion, Vol. 25, No. 2, 143-149, 2000.
doi:10.1109/60.866991

7. Faiz, J., I. Tabatabaei, and H. A. Toliyat, "An evaluation of inductances of a squirrel-cage induction motor under mixed eccentric conditions," IEEE Transactions on Energy Conversion, Vol. 18, No. 2, 252-258.
doi:10.1109/TEC.2003.811740

8. Faiz, J. and I. Tabatabaei, "Extension of winding function theory for non uniform air gap in electric machinery," IEEE Transactions on Magnetic, Vol. 38, No. 6, 3654-3657, 2002.
doi:10.1109/TMAG.2002.804805

9. Nandi, S., R. M. Bharadwaj, and H. A. Toliyat, "P erformance analysis of a three-phase induction motor under mixed eccentricity condition," IEEE Transactions on Energy Conversion, Vol. 17, No. 3, 392-397, 2002.
doi:10.1109/TEC.2002.801995

10. Nandi, S., S. Ahmed, and H. A. Toliyat, "Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages," IEEE Trans. Energy Conversion, Vol. 16, No. 3, 253-260, 2001.
doi:10.1109/60.937205

11. Ostovcic, V., "A simplified approach to the magnetic equivalent circuit modeling of electric machines," IEEE Trans. Industrial Applications, Vol. IA-24, No. 2, 308-316, 1988.
doi:10.1109/28.2871

12. Lipo, T. A., "The analysis of induction motors with voltage control by symmetrically triggered thyristors," IEEE Trans. Power Apparatus and Systems, Vol. PAS-90, No. 2, 515-525, 1971.

13. Smith, J. R., Response Analysis of AC Machines: Computer Models and Simulation, Research Studies Press Ltd., Somerset, England, 1990.

14. Barbour, A. and W. T. Thomson, "Finite element study of rotor slot designs with respect to current monitoring for detecting static air-gap eccentricity in squirrel-cage induction motors," IEEE Industrial Applications Society Annual Meeting, 5-8, 1997.

15. Thomson, W. T. and A. Barbour, An industrial case study of online current monitoring and finite element analysis to diagnose airgap eccentricity problems in large high voltage 3-phase induction motors, 9th International Conference on Electrical Machines and Drives, No. Conference Publication 468, 3, 1999.

16. Tenhunen, A., T. Bendetti, T. P. Holopainen, and A. Arkkio, Electromagnetic forces of the cage rotor in conical whirling motion, IEE Proc.-Electr. Power Apply., Vol. 150, No. 5, 563-568, 2003.

17. Tenhunen, A., T. P. Holopainen, and A. Arkkio, "Effects of saturation on the forces in induction motors with whirling cage rotor," IEEE Transactions on Magnetics, Vol. 40, No. 2, 766-769, 2004.
doi:10.1109/TMAG.2004.824549

18. Tenhunen, A., "Calculation of eccentricity harmonics of the airgap flux density in induction machine by impulse method," IEEE Transactions on Magnetics, Vol. 41, No. 5, 1904-1907, 2005.
doi:10.1109/TMAG.2005.846254

19. Pham, T. H., P . F. Wendling, S. J. Salon, and H. Acikgoz, "Transient finite element analysis of an induction motor with external circuit connections and electromechanical coupling," IEEE Trans. Energy Conversion, Vol. 14, No. 4, 1407-1412, 1999.
doi:10.1109/60.815081

20. Krefta, M. P. and O. Wasynczuk, "A finite element based state model of solid rotor synchronous machines," IEEE Transactions Energy Conversion, Vol. EC-2, No. 1, 21-30, 1987.

21. Ho, S. C., C. G. Hong, and G. J. Hwang, T ransient and steady state performance of a squirrel-cage induction motor, IEE Proceedings, Vol. 136, No. 3, 136-142, 1989.

22. Williamson, S., L. H. Lim, and A. C. Smith, "T ransient analysis of cage induction motor using finite elements," IEEE Trans. Magnetics, Vol. 26, No. 2, 941-944, 1990.
doi:10.1109/20.106473

23. Thorsen, O. V. and M. Dalva, "F ailure identification and analysis for high voltage induction motors in petrochemical industry," IEEE Trans. Ind. A, Vol. 12, No. 2, 1998.

24. Thomson, W. T., "On line current monitoring and application of a finite element method to predict the level of static air gap eccentricity in three-phase induction motors," IEEE Transactions on Energy Conversion, Vol. 13, No. 14, 347-354, 1998.
doi:10.1109/60.736320

25. Demerdash, N. A., J. F. Bangura, and A. A. Arkadan, "A timestepping coupled finite element-state space model for induction motor drives. I. Model formulation and machine parameter computation," IEEE Transactions on Energy Conversion, Vol. 14, No. 4, 1465-1471, 1999.
doi:10.1109/60.815091

26. Bangura, J. F. and N. A. Demerdash, "Effects of broken bars/endring connectors and air gap eccentricities on ohmic and core losses of induction motors in ASDs using a coupled finite elementstate space method," IEEE Transactions on Energy Conversion, Vol. 15, No. 1, 40-47, 2000.
doi:10.1109/60.849114

27. Povinelli, R. J., J. F. Bangura, N. A. O. Demerdash, and R. H. Brown, Diagnostics of bar and end-ring connector breakage faults in poly phase induction motors through a novel dual track of time-series data mining and time-stepping coupled FE-state space modeling, Electric Machines and Drives Conference, 809-813.

28. Povinelli, R. J., J. F. Bangura, N. A. O. Demerdash, and R. H. Brown, "Diagnostics of bar and end-ring connector breakage faults in poly phase induction motors through a novel dual track of time-series Data mining and time-stepping coupled FE-state space modeling," IEEE Transactions on Energy Conversion, Vol. 17, No. 1, 39-46, 2002.
doi:10.1109/60.986435

29. Bangura, J. F., R. J. Povinelli, N. A. O. Demerdash, and R. H. Brown, "Diagnostics of eccentricities and bar/end-ring connector breakages in poly phase induction motors through a combination of time series data mining and time-stepping coupled FE-state-space techniques," Industry Applications, Vol. 39, No. 4, 1005-1013, 2003.
doi:10.1109/TIA.2003.814582

30. Toliyat, H. A. and S. Nandi, Condition monitoring and fault diagnosis of electrical machines — a review, Proceedings of the IEEE-IAS 1999 Annual Meeting, 3-7, 1999.

31. Nandi, S., R. Bharadwaj, H. A. Toliyat, and A. G. Parlos, Study of three phase induction motors with incipient rotor cage faults under different supply conditions, Proceedings of the IEEE-IAS 1999 Annual Meeting, Vol. 3, 1922-1928, 1999.

32. Elkasabgy, N. M., A. R. Eastman, and G. E. Dawson, "Detection of broken bar in the cage rotor on an induction machine," IEEE Transactions on Industry Application, Vol. 28, No. 1, 1992.

33. Ho, S. L., W. N. Fu, and H. C. Wong, "An incremental method for studying the steady state performance of induction motors using time stepping finite element model," IEEE Transactions on Magnetic, Vol. 33, No. 2, 1374-1377, 1997.
doi:10.1109/20.582512


© Copyright 2014 EMW Publishing. All Rights Reserved