PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 70 > pp. 281-296

A COMPARISON OF MARCHING-ON IN TIME METHOD WITH MARCHING-ON IN DEGREE METHOD FOR THE TDIE SOLVER

By B.-H. Jung, Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan

Full Article PDF (345 KB)

Abstract:
One of the most popular methods to solve a time-domain integral equation (TDIE) is the marching-on in time (MOT) method. Recently, a new method called marching-on in degree (MOD) that uses Laguerre polynomials as temporal basis functions has been developed to eliminate the late time instability of the MOT method. The use of an entire domain basis for the time variable eliminates the requirement of a Courant condition, as there is no time variable involved in the field calculation. This is possible as in the procedure the time and the space variables can be separated analytically. A comparison is presented between these two methods from the standpoint of formulation, stability, cost, and accuracy. Numerical results are presented to illustrate these features in the comparison.

Citation: (See works that cites this article)
B.-H. Jung, Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan, "A comparison of marching-on in time method with marching-on in degree method for the tdie solver," Progress In Electromagnetics Research, Vol. 70, 281-296, 2007.
doi:10.2528/PIER07013002
http://www.jpier.org/pier/pier.php?paper=07013002

References:
1. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 56-61, 1991.
doi:10.1109/8.64435

2. Sarkar, T. K., W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1625-1634, 2000.
doi:10.1109/8.899679

3. Jung, B. H. and T. K. Sarkar, "Time-domain electric-field integral equation with central finite difference," Microwave Opt. Technol. Lett., Vol. 31, No. 6, 429-435, 2001.
doi:10.1002/mop.10055

4. Jung, B. H and T. K. Sarkar, "Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects," Microwave Opt. Technol. Lett., Vol. 34, No. 4, 289-296, 2002.
doi:10.1002/mop.10440

5. Vechinski, D. A. and S. M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 661-665, 1992.
doi:10.1109/8.144600

6. Hu, J.-L., C. H. Chan, and Y. Xu, "A new temporal basis function for the time-domain integral equation method," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 11, 465-466, 2001.
doi:10.1109/7260.966043

7. Weile, D. S., G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen, "A novel scheme for the solution of the timedomain integral equations of electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 283-295, 2004.
doi:10.1109/TAP.2003.822450

8. Manara, G., A. Monorchio, and R. Reggiannini, "A space-time discretization criterion for a stable time-marching solution of the electric field integral equation," IEEE Trans. Antennas and Propagat., Vol. 45, No. 3, 527-532, 1997.
doi:10.1109/8.558668

9. Davies, P. J., "Numerical stability and convergence of approximations of retarded potential integral equations," SIAM J. Numer. Anal., Vol. 31, No. 6, 856-875, 1994.
doi:10.1137/0731046

10. Davies, P. J., "On the stability of time-marching schemes for the general surface electric-field integral equation," IEEE Trans. Antennas Propagat., Vol. 44, No. 11, 1467-1473, 1996.
doi:10.1109/8.542071

11. Shankar, B., A. A. Ergin, K. Aygun, and E. Michielssen, "Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation," IEEE Trans. Antennas Propagat., Vol. 48, No. 7, 1064-1074, 2000.
doi:10.1109/8.876325

12. Rynne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric field equation," J. Electromagn. Waves Applicat., Vol. 4, 1181-1205, 1990.

13. Davies, P. J., "A stability analysis of a time marching scheme for the general surface electric field integral equation," Appl. Nume. Math., Vol. 27, 33-57, 1998.
doi:10.1016/S0168-9274(97)00107-4

14. Tijhuis, A. G., "Toward a stable marching-on-in-time method for two-dimensional transient electromagnetic scattering problems," Radio Sci., Vol. 19, 1311-1317, 1984.

15. Sadigh, A. and E. Arvas, "Treating the instabilities in marchingon- in-time method from a different perspective," IEEE Trans. Antennas Propagat., Vol. 41, No. 12, 1695-1702, 1993.
doi:10.1109/8.273314

16. Yla-Oijala, P., M. Taskiene, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

17. Hanninen, I., M. Taskinen, and J. Sarvas, "Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions," Progress In Electromagnetics Research, Vol. 63, 243-278, 2006.
doi:10.2528/PIER06051901

18. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higherorder MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

19. Chung, Y.-S., T. K. Sarkar, and B. H. Jung, "Solution of a time-domain magnetic-field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Microwave Opt. Technol. Lett., Vol. 35, No. 6, 493-499, 2002.
doi:10.1002/mop.10647

20. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001

21. Jung, B. H., T. K. Sarkar, Y.-S. Chung, M. Salazar-Palma, and Z. Ji, "Time-domain combined field integral equation using Laguerre polynomials as temporal basis functions," Int. J. Nume. Model., Vol. 17, No. 3, 251-268, 2004.
doi:10.1002/jnm.538

22. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 39, 113-142, 2004.
doi:10.2528/PIER04022304

23. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.
doi:10.2528/PIER03082502

24. Poularikas, A. D., The Transforms and Applications Handbook, IEEE Press, 1996.

25. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980.

26. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818


© Copyright 2014 EMW Publishing. All Rights Reserved