PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 71 > pp. 85-94

FRACTIONAL DUALITY AND PERFECT ELECTROMAGNETIC CONDUCTOR (PEMC)

By A. Hussain, Q. A. Naqvi, and M. Abbas

Full Article PDF (441 KB)

Abstract:
Using fractional curl operator, impedance of the surface which may be regarded as intermediate step between the perfect electromagnetic conductor (PEMC) and dual to the perfect electromagnetic conductor (DPEMC) has been determined. The results are compared with the situation which is intermediate step ofp erfect electric conductor (PEC) and perfect magnetic conductor (PMC).

Citation: (See works that cites this article)
A. Hussain, Q. A. Naqvi, and M. Abbas, "Fractional Duality and Perfect Electromagnetic Conductor (PEMC)," Progress In Electromagnetics Research, Vol. 71, 85-94, 2007.
doi:10.2528/PIER07020702
http://www.jpier.org/PIER/pier.php?paper=07020702

References:
1. Lindell, I. V. and A. H. Sihvola, "Realization ofthe PEMC boundary," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3012-3018, 2005.
doi:10.1109/TAP.2005.854524

2. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," J. Electromagn. Waves Appl., Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

3. Lindell, I. V. and A. H. Sihvola, "Transformation method for problems involving perfect electromagnetic conductor (PEMC) structures," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 9, 3005-3011, 2005.
doi:10.1109/TAP.2005.854519

4. Lindell, I. V. and A. H. Sihvola, "Losses in PEMC boundary," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 9, 2553-2558, 2006.
doi:10.1109/TAP.2006.880740

5. Lindell, "I. V. Electromagnetic fields in selfdual media in differential-form representation," Progress In Electromagnetics Research, 319-333, 2006.
doi:10.2528/PIER05072201

6. Engheta, N., "Fractional curl operator in electromagnetics," Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

7. Veliev, E. I. and N. Engheta, "Fractional curl operator in reflection problems," 10th Int. Conf. on Mathematical Methods in Electromagnetic Theory, 14-17, 2004.

8. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and fractional nonsymmetric transmission line," Progress In Electromagnetics Research, Vol. 59, 199-213, 2006.
doi:10.2528/PIER05092801

9. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and Fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604

10. Ivakhnychenko, M. V., E. I. Veliev, and T. M. Ahmedov, New generalized electromagnetic boundaries fractional operators approach, Proceedings of MMET*06, 434-437, 2006.

11. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and Fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007.

12. Ozaktas, H. M., Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Wiley, New York, 2001.


© Copyright 2014 EMW Publishing. All Rights Reserved