Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 73 > pp. 249-275


By S. P. Singh and N. Singh

Full Article PDF (387 KB)

The nonlinear effects in optical fiber occur either due to intensity dependence of refractive index of the medium or due to inelastic-scattering phenomenon. This paper describes various types of nonlinear effects based on first effect such as self-phase modulation, cross-phase modulation and four-wave mixing. Their thresholds, managements and applications are also discussed; and comparative study of these effects is presented.

Citation: (See works that cites this article)
S. P. Singh and N. Singh, "Nonlinear Effects in Optical Fibers: Origin, Management and Applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.

1. Tsuritani, T., A. Agata, K. Imai, I. Morita, K. Tanaka, T. Miyakawa, N. Edagawa, and M. Suzaka, 35 GHz spaced 20 GbtsX100 WDM RZ transmission over 2700km using SMFbased dispersion flattened fiber span, Proc. Eur. Conf. Optical Communication, 3-7, 2000.

2. Bigo, S., Design of multi-tera bit/s transmission systems, Proc. Topical Meetingon Optical Amplifiers and Their Applications (OAA'01), 1-7, 2001.

3. Akimaru, H. and M. R. Finley, "Elements of the emerging broadband information highway," IEEE Commun. Mag., Vol. 35, 84-94, 1997.

4. Chraplyvy, A. R. and R. W. Tkach, "Terabit/second transmission experiments," IEEE J. Quantum Electron., Vol. 34, 2103-2108, 1998.

5. Agrawal, G. P., Nonlinear Fiber Optics, 3rd edition, Academic Press, San Diego, CA, 2001.

6. Ramaswami, R. and K. Sivarajan, Optical Networks — A Practical Perspective, Morgan Kaufmann Pub. Inc., San Francisco, 1998.

7. Stolen, R. H. and C. Lin, "Self-phase modulation in silica optical fibers," Physical Review A, Vol. 17, No. 4, 1448-1453, 1978.

8. Kikuchi, N. and S. Sasaki, "Analytical evaluation technique of selfphase modulation effect on the performance of cascaded optical amplifier," J. Lightwave Tech., Vol. 13, 868-878, 1995.

9. Chraplyvy, A. R., D. Marcuse, and P. S. Henry, "Carrierinduced phase noise in angle-modulated optical fiber systems," J. Lightwave Tech., Vol. 2, No. 1, 6-10, 1984.

10. Chraplyvy, A. R., "Limitations on lightwave communications imposed by optical fiber nonlinearities," J. Lightwave Tech., Vol. 8, 1548-1557, 1990.

11. Haus, H. A., Optical fiber solitons: their properties and uses, Proc. IEEE, Vol. 81, 970-983, 1993.

12. Tkach, R. W., A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Dorosier, "Four-photon mixing and high-speed WDM systems," J. Lightwave Tech., Vol. 13, 841-849, 1995.

13. Kikuchi, N., K. Sekine, and S. Saski, "Analysis of XPM effect on WDM transmission performance," Electron. Lett., Vol. 33, 653-654, 1997.

14. Kurtze, C., "Suppression of fiber nonlinearities by appropriate dispersion management," IEEE, Vol. 5, 1250-1253, 1993.

15. Zon, X. Y., M. I. Hayee, S. M. Hwang, and A. E. Willner, "Limitations in 10-Gb/s WDM optical fiber transmission when using a variety of fiber types to manage dispersion and nonlinearities," J. Lightwave Tech., Vol. 14, 1144-1152, 1996.

16. Shibata, N., R. P. Braun, and R. G. Waarts, "Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in single-mode optical fiber," IEEE, Vol. QE-23, No. 7, 1205-1210, 1997.

17. Hussian, M. G. M., "Mathematical method for electromagnetic conductivity of lossy materials," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 2, 271-279, 2005.

18. Biswas, A. and S. Konar, "Soliton-solitons interaction with kerr law non-linearity," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1443-1453, 2005.

19. Sawetanshumala, S. Jana, and S. Konar, "Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 65-77, 2006.

20. Mandal, B. and A. R. Chowdhary, "Spatial soliton scattering in a quasi phase matched quaderatic media in presence of cubic nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 123-135, 2007.

21. Xiao, X. S., S. M. Gao, Y. Tian, and C. X. Yang, "Optimization of the net residual dispersion for self-phase modulation-impaired systems by perturbation theory," J. Lightwave. Tech., Vol. 25, No. 3, 929-937, 2007.

22. Xiao, X. S., S. M. Gao, Y. Tian, and C. X. Yang, "Analytical optimization of net residual dispersion in SPM-limited dispersionmanaged systems," J. Lightwave. Tech., Vol. 24, No. 5, 2038-2044, 2006.

23. Yang, Y, C. Lou, H. Zhou, J. Wang, and Y. Gao, "Simple pulse compression scheme based on filtering self-phase modulationbroadened spectrum and its application in an optical time-division multiplexing systems," Appl. Opt., Vol. 45, 7524-7528, 2006.

24. Okawachi, Y., J. E. Sharping, C. Xu, and A. L. Gaeta, "Large tunable optical delays via self-phase modulation and dispersion," Optics Express, Vol. 14, No. 25, 2006.

25. Oda, S. and A. Maruta, "All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation," Optics Express, Vol. 14, 7895-7902, 2006.

26. Daikoku, M., N. Yoshikane, T. Otani, and H. Tanaka, "Optical 40-Gb/s 3R regenerator with a combination of the SPM and XAM effects for all-optical networks," J. Lightwave.Tech., Vol. 24, No. 3, 1142-1148, 2006.

27. Abedin, K. S., "Ultrafast pulse retiming by cross-phase modulation in an anomalous-dispersion polarization-maintaining fiber," Opt. Lett., Vol. 30, 2979-2981, 2005.

28. Alfano, R. R., The Supercontinuum Laser Source, 2nd edition, Springer, New York, 2006.

29. Singh, S. P., S. Kar, and V. K. Jain, "Novel strategies for reducing FWM using modified repeated unequally spaced channel allocation," Fiber and Integrated Optics, Vol. 6, 415-437, 2004.

30. Asimakis, S., P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, "Towards efficient and broadband four-wavemixing using short-length dispersion tailored lead silicate holy fibers," Optics Express, Vol. 15, No. 2, 596-601, 2007.

© Copyright 2014 EMW Publishing. All Rights Reserved