PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 119-135

AN IMPROVED TIME DOMAIN FINITE ELEMENT-BOUNDARY INTEGRAL SCHEME FOR ELECTROMAGNETIC SCATTERING FROM 3-D OBJECTS

By Z.-J. Qiu, J.-D. Xu, G. Wei, and X.-Y. Hou

Full Article PDF (627 KB)

Abstract:
This paper proposes an improved time domain finite element-boundary integral scheme for 3-D scattering from arbitraryshaped objects. The proposed scheme, which uses only one auxiliary boundary, is more efficient than the one reported in the literature that uses two auxiliary boundaries. While preserving the sparseness and symmetry of the finite element matrices, the proposed scheme reduces the computational domain for the finite elements. A major difficulty, here, is the treatment of the singularity of Green's function arising from this scheme. To overcome this problem, the contribution of singular point is computed analytically, and equivalent transformation technique is also included to reduce the integrals' singularity. And, a remedy is presented for the numerical error encountered in the course of the equivalent transformation, which essentially may be attributed to the inherent routine with the time domain finite element-boundary integral method. The validity and accuracy of the hybrid scheme are verified by numerical tests.

Citation: (See works that cites this article)
Z.-J. Qiu, J.-D. Xu, G. Wei, and X.-Y. Hou, "An improved time domain finite element-boundary integral scheme for electromagnetic scattering from 3-d objects," Progress In Electromagnetics Research, Vol. 75, 119-135, 2007.
doi:10.2528/PIER07053106
http://www.jpier.org/pier/pier.php?paper=07053106

References:
1. Paulsen, K. D., D. R. Lynch, and J. W. Strobehn, "Threedimensional finite, boundary, and hybrid element solutions of Maxwell equations for lossy dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 4, 682-693, 1988.
doi:10.1109/22.3572

2. Shen, X. Q., J. M. Jin, J. Song, C. C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 46, No. 3, 303-311, 1998.
doi:10.1109/8.662648

3. Liu, J. and J. M. Jin, "A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems," IEEE Trans. Antennas Propagat., Vol. 49, No. 12, 1794-1806, 2001.
doi:10.1109/8.982462

4. Botha, M. M. and J. M. Jin, "Adaptive finite element-boundary integral analysis for electromagnetic fields in 3-D," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1710-1720, 2005.
doi:10.1109/TAP.2005.846802

5. Zhang, Y. J. and E. P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," J. Electromagn. Waves Appl., Vol. 19, 1535-1546, 2005.
doi:10.1163/156939305775701813

6. Qiu, Z. J., X. Y. Hou, X. Li, and J. D. Xu, "On the condition number of matrices from various hybrid vector FEMBEM formulations for 3-D scattering," J. Electromagn. Waves Appl., Vol. 20, 1797-1806, 2006.
doi:10.1163/156939306779292138

7. Gao, S., L. W. Li, and A. Sambell, "FETD analysis of a dual-frequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
doi:10.2528/PIER04120102

8. Gong, Z. and G. Q. Zhu, "FDTD analysis of an anisotriopically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

9. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, "Full wave analysis of RF signal attenuation in a rough surface cave using a higher order time domain vector finite element method," J. Electromagn. Waves Appl., Vol. 20, 1695-1705, 2006.
doi:10.1163/156939306779292408

10. Jiao, D., M. Lu, E. Michielssen, and J. M. Jin, "A fast time-domain finite element-boundary integral method for electromagnetic analysis," IEEE Trans. Antennas Propagat., Vol. 49, No. 10, 1453-1461, 2001.
doi:10.1109/8.954934

11. McCowen, A., A. J. Radcliffe, and M. S. Towers, "Time-domain modeling of scattering from arbitrary cylinders in two dimensions using a hybrid finite-element and integral equation method," IEEE Trans. Magn., Vol. 39, No. 5, 1227-1229, 2003.
doi:10.1109/TMAG.2003.810501

12. Jiao, D., A. A. Ergin, B. Shanker, E.Michielssen, and J. M. Jin, "A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis," IEEE Trans. Antennas Propagat., Vol. 50, No. 9, 1192-1202, 2002.
doi:10.1109/TAP.2002.801375

13. Rao, S. M. and D. R. Wilton, "E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies," Electromagn., Vol. 10, 407-421, 1990.
doi:10.1080/02726349008908254

14. Bossavit, A., Whitney forms: a class of finite elements for three-dimensional computation in electromagnetism, IEE Proc., Vol. 135, No. 11, 493-500, 1988.


© Copyright 2014 EMW Publishing. All Rights Reserved