Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 353-366


By S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi

Full Article PDF (530 KB)

Use of Multi-Objective Particle Swarm Optimization for designing of planar multilayered electromagnetic absorbers and finding optimal Pareto front is described. The achieved Pareto presents optimal possible trade-offs between thickness and reflection coefficient of absorbers. Particle swarm optimization method in comparison with most of optimization algorithms such as genetic algorithms is simple and fast. But the basic form of Multi-objective Particle Swarm Optimization may not obtain the best Pareto. We applied some modifications to make it more efficient in finding optimal Pareto front. Comparison with reported results in previous articles confirms the ability of this algorithm in finding better solutions.

S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified Multi-Objective Particle Swarm Optimization for Electromagnetic Absorber Design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.

1. Weile, D. S., E. Michielssen, and D. E. Goldberg, "Genetic algorithm design of Pareto optimal broadband microwave absorbers," IEEE Trans. Electromagn. Compat., Vol. 38, 518-525, 1996.

2. Cui, S., A. Mohan, and D. S. Weile, "Pareto optimal design of absorbers using a parallel elitist nondominated sorting genetic algorithm and the finite element-boundary integral method," IEEE Trans. Antennas Propagat., Vol. 53, 2099-2107, 2005.

3. Goudos, S. K. and J. N. Sahalos, "Microwave absorber optimal design using multi-objective particle swarm optimization," Microwave and Optical Technology Letters, Vol. 48, No. 8, 1553-1558, 2006.

4. Mahmoud, K. R., M. El-Adawy, and S. M. M. Ibrahem, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.

5. Lee, K.-C. and J.-Y. Jhang, "Application of particle swarm optimization algorithm to the optimization of unequally spaced antenna arrays," Journal of Electromagnetic Wave and Applications, Vol. 20, No. 14, 2001-2012, 2006.

6. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Wave and Applications, Vol. 20, No. 13, 1785-1795, 2006.

7. Kennedy, J. and R. Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Network, 1995.

8. Engelbrecht, A. P., Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, 2005.

9. Lei, J., G. Fu, L. Yang, and D. M. Fu, "Multi-objective optimization design of the Yagi-Uda antenna with an Xshaped driven dipole," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 963-972, 2007.

10. Lee, Y. H., B. J. Cahill, S. J. Porter, and A. C. Marvin, "A novel evolutionary learning technique for multi-objective array antenna optimization," Progress In Electromagnetics Research, Vol. 48, 125-144, 2004.

11. Coello, C. A. C., G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Trans. Evolutionary Computat., Vol. 8, 256-279, 2004.

12. Chamaani, S., S. A. Mirtaheri, and M. A. Shooredeli, Design of very thin wide band absorbers using particle swarm optimization, Proceeding of the 2006 Antem/Ursi, No. 7, 629-632, 2006.

13. Perini, J. and L. S. Cohen, "Design of broad-band radar-absorbing materials for large angles of incidence," IEEE Trans. Electromagn Compat., Vol. 35, No. 2, 223-230, 1993.

14. Pesque, J. J., D. P. Bouche, and R. Mittra, "Optimization of multilayered antireflection coatings using an optimal control method," IEEE Trans. Antennas Propagat., Vol. 41, No. 9, 1789-1796, 1992.

© Copyright 2014 EMW Publishing. All Rights Reserved