Vol. 79
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-16
A Combination of Time Domain Finite Element-Boundary Integral and with Time Domain Physical Optics for Calculation of Electromagnetic Scattering of 3-d Structures
By
Progress In Electromagnetics Research, Vol. 79, 463-474, 2008
Abstract
This paper presents a hybrid numerical approach combining an improved Time Domain Finite Element-Boundary Integral (FE-BI) method with Time Domain Physical Optics (TDPO) for calculations of electromagnetic scattering of 3-D combinativecomplex objects. For complex-combined objects containing a small size and large size parts, using TDPO is an appropriate approach for coupling between two regions. Therefore, our technique calculates the objects complexity with the help of FE-BI and the combinatory structures by using of the TDPO. The hybridization algorithm for restrictive object is implemented and the numerical results validate the superiority of the proposed algorithm via realistic electromagnetic applications.
Citation
Faramarz Faghihi, and Hossein Heydari, "A Combination of Time Domain Finite Element-Boundary Integral and with Time Domain Physical Optics for Calculation of Electromagnetic Scattering of 3-d Structures," Progress In Electromagnetics Research, Vol. 79, 463-474, 2008.
doi:10.2528/PIER07110206
References

1. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

2. Wei, S., Z. Huang, X. Wu, and M. Chen, "Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation," J. Comput. Phys., Vol. 225, 33-50, 2007.
doi:10.1016/j.jcp.2006.11.027

3. Jian, L. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation of 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 50, 1212-1221, 2002.
doi:10.1109/TAP.2002.801377

4. Liu, J. and J. M. Jin, "A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems," IEEE Trans. Antennas Propagat., Vol. 49, 1794-1806, 2001.
doi:10.1109/8.982462

5. Qiu, Z. J., J. D. Xu, G. Wei, and X. Y. Hou, "An improved time domain finite element-boundary integral scheme for electromagnetic scattering from 3-D objects," Progress In Electromagnetics Research, Vol. 75, 119-135, 2007.
doi:10.2528/PIER07053106

6. Kashdan, E. and E. Turkel, "High-order accurate modeling of electromagnetic wave propagation across media — Grid conforming bodies," J. Comput. Phys., Vol. 218, 816-835, 2006.
doi:10.1016/j.jcp.2006.03.009

7. Jin, J. M., The Finite Element Methodin Electromagnetic, 2nd edition, Wiley, New York, 2002.

8. Qiu, Z. J., X. Y. Hou, X. Li, and J. D. Xu, "On the condition number of matrices from various hybrid vector FEMBEM formulations for 3-D scattering," J. Electromagn. Waves Appl., Vol. 20, 1797-1806, 2006.
doi:10.1163/156939306779292138

9. Botha, M. M. and J. M. Jin, "Adaptive finite element-boundary integral analysis for electromagnetic fields in 3-D," IEEE Trans. Antennas Propagat., Vol. 53, 1710-1720, 2005.
doi:10.1109/TAP.2005.846802

10. Paulsen, K. D., D. R. Lynch, and J. W. Strobehn, "Three dimensional finite, boundary, and hybrid element solutions of Maxwell equations for lossy dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 36, 682-693, 1988.
doi:10.1109/22.3572

11. Gong, Z. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

12. Remis, R. F., "On the stability of the finite-difference time-domain method," J. of Computational Physics, Vol. 163, 249-261, 2000.
doi:10.1006/jcph.2000.6573

13. Jiao, D., A. A. Ergin, B. Shanker, E. Michielssen, and J. M. Jin, "A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis," IEEE Trans. Antennas Propagat., Vol. 50, 1192-1202, 2002.
doi:10.1109/TAP.2002.801375

14. Cowen Mc, A., A. J. Radcliffe, and M. S. Towers, "Time-domain modeling of scattering from arbitrary cylinders in two dimensions using a hybrid finite-element and integral equation method," IEEE Trans. Magn., Vol. 39, 1227-1229, 2003.
doi:10.1109/TMAG.2003.810501

15. Wang, Y., K. C. Sujeet, and S. N. Safieddin, "FDTD/raytracing analysis method for wave penetration through inhomogeneous walls," IEEE Trans. on Antennas andPr opagat., Vol. 50, 1598-1604, 2002.
doi:10.1109/TAP.2002.802157

16. Nie, X. C., Y. B. Gan, N. Yuan, C. F. Wang, and L. W. Li, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," J. of Electromagn. Wave andAppl., Vol. 20, 249-264, 2006.
doi:10.1163/156939306775777215

17. Sun, E. Y. and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. on Antennas andPr opagat., Vol. 42, 9-15, 1994.
doi:10.1109/8.272295

18. Beillard, B., L. Andrieu, Y. Chevalier, and B. Jecko, "Technique combining the finite difference time domain and the uniform theory of diffraction," Microwave andOptic al Technology Letters, Vol. 16, 10-16, 1997.

19. Yang, L. X., D. B. Ge, and B. Wei, "FDTD/TDPO hybrid approachfor analysis of the EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206

20. Sadiku and Matthew, Numerical Techniques in Electromagnetic, Numerical Techniques in Electromagnetic, 2nd edition, CRC Press, 2001.

21. Rao, S. M. and D. R. Wilton, "E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies," Electromagn., Vol. 10, 407-421, 1990.
doi:10.1080/02726349008908254

22. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computation in electromagnetism," IEE Proc., Vol. 135, 493-500, 1988.

23. Christie, I., D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz, "Finite element methods for second order differential equations withsignifican t first derivatives," International Journal for Numerical Methods in Engineering, Vol. 10, 1389-1396, 1976.
doi:10.1002/nme.1620100617

24. Costanzo, S. and G. Di Massa, "Near-field to far-field transformation withplanar spiral scanning," Progress In Electromagnetics Research, Vol. 73, 49-59, 2007.
doi:10.2528/PIER07031903

25. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, "Full wave analysis of RF signal attenuation in a roughsurface cave using a higher order time domain vector finite element method," J. Electromagn. Waves Appl., Vol. 20, 1695-1705, 2006.
doi:10.1163/156939306779292408

26. Zhang, Y. J. and E. P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," J. Electromagn. Waves Appl., Vol. 19, 1535-1546, 2005.
doi:10.1163/156939305775701813

27. Chen, K.-S., A. K. Fung, J. C. Shi, and H.-W. Lee, "Interpretation of backscattering mechanisms from non-Gaussian correlated randomly roughsurfaces," J. Electromagn. Waves Appl., Vol. 20, No. 1, 105-118, 2006.
doi:10.1163/156939306775777404

28. Fung, A. K. and N. C. Kuo, "Backscattering from multi-scale and exponentially correlated surfaces," J. Electromagn. Waves Appl., Vol. 20, No. 1, 3-11, 2006.
doi:10.1163/156939306775777378