PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 463-474

A COMBINATION OF TIME DOMAIN FINITE ELEMENT-BOUNDARY INTEGRAL AND WITH TIME DOMAIN PHYSICAL OPTICS FOR CALCULATION OF ELECTROMAGNETIC SCATTERING OF 3-D STRUCTURES

By F. Faghihi and H. Heydari

Full Article PDF (127 KB)

Abstract:
This paper presents a hybrid numerical approach combining an improved Time Domain Finite Element-Boundary Integral (FE-BI) method with Time Domain Physical Optics (TDPO) for calculations of electromagnetic scattering of 3-D combinativecomplex objects. For complex-combined objects containing a small size and large size parts, using TDPO is an appropriate approach for coupling between two regions. Therefore, our technique calculates the objects complexity with the help of FE-BI and the combinatory structures by using of the TDPO. The hybridization algorithm for restrictive object is implemented and the numerical results validate the superiority of the proposed algorithm via realistic electromagnetic applications.

Citation: (See works that cites this article)
F. Faghihi and H. Heydari, "A Combination of Time Domain Finite Element-Boundary Integral and with Time Domain Physical Optics for Calculation of Electromagnetic Scattering of 3-D Structures," Progress In Electromagnetics Research, Vol. 79, 463-474, 2008.
doi:10.2528/PIER07110206
http://www.jpier.org/PIER/pier.php?paper=07110206

References:
1. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

2. Wei, S., Z. Huang, X. Wu, and M. Chen, "Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation," J. Comput. Phys., Vol. 225, 33-50, 2007.
doi:10.1016/j.jcp.2006.11.027

3. Jian, L. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation of 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 50, 1212-1221, 2002.
doi:10.1109/TAP.2002.801377

4. Liu, J. and J. M. Jin, "A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems," IEEE Trans. Antennas Propagat., Vol. 49, 1794-1806, 2001.
doi:10.1109/8.982462

5. Qiu, Z. J., J. D. Xu, G. Wei, and X. Y. Hou, "An improved time domain finite element-boundary integral scheme for electromagnetic scattering from 3-D objects," Progress In Electromagnetics Research, Vol. 75, 119-135, 2007.
doi:10.2528/PIER07053106

6. Kashdan, E. and E. Turkel, "High-order accurate modeling of electromagnetic wave propagation across media — Grid conforming bodies," J. Comput. Phys., Vol. 218, 816-835, 2006.
doi:10.1016/j.jcp.2006.03.009

7. Jin, J. M., The Finite Element Methodin Electromagnetic, 2nd edition, Wiley, New York, 2002.

8. Qiu, Z. J., X. Y. Hou, X. Li, and J. D. Xu, "On the condition number of matrices from various hybrid vector FEMBEM formulations for 3-D scattering," J. Electromagn. Waves Appl., Vol. 20, 1797-1806, 2006.
doi:10.1163/156939306779292138

9. Botha, M. M. and J. M. Jin, "Adaptive finite element-boundary integral analysis for electromagnetic fields in 3-D," IEEE Trans. Antennas Propagat., Vol. 53, 1710-1720, 2005.
doi:10.1109/TAP.2005.846802

10. Paulsen, K. D., D. R. Lynch, and J. W. Strobehn, "Three dimensional finite, boundary, and hybrid element solutions of Maxwell equations for lossy dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 36, 682-693, 1988.
doi:10.1109/22.3572

11. Gong, Z. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

12. Remis, R. F., "On the stability of the finite-difference time-domain method," J. of Computational Physics, Vol. 163, 249-261, 2000.
doi:10.1006/jcph.2000.6573

13. Jiao, D., A. A. Ergin, B. Shanker, E. Michielssen, and J. M. Jin, "A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis," IEEE Trans. Antennas Propagat., Vol. 50, 1192-1202, 2002.
doi:10.1109/TAP.2002.801375

14. Cowen Mc, A., A. J. Radcliffe, and M. S. Towers, "Time-domain modeling of scattering from arbitrary cylinders in two dimensions using a hybrid finite-element and integral equation method," IEEE Trans. Magn., Vol. 39, 1227-1229, 2003.
doi:10.1109/TMAG.2003.810501

15. Wang, Y., K. C. Sujeet, and S. N. Safieddin, "FDTD/raytracing analysis method for wave penetration through inhomogeneous walls," IEEE Trans. on Antennas andPr opagat., Vol. 50, 1598-1604, 2002.
doi:10.1109/TAP.2002.802157

16. Nie, X. C., Y. B. Gan, N. Yuan, C. F. Wang, and L. W. Li, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," J. of Electromagn. Wave andAppl., Vol. 20, 249-264, 2006.
doi:10.1163/156939306775777215

17. Sun, E. Y. and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. on Antennas andPr opagat., Vol. 42, 9-15, 1994.
doi:10.1109/8.272295

18. Beillard, B., L. Andrieu, Y. Chevalier, and B. Jecko, "Technique combining the finite difference time domain and the uniform theory of diffraction," Microwave andOptic al Technology Letters, Vol. 16, 10-16, 1997.

19. Yang, L. X., D. B. Ge, and B. Wei, "FDTD/TDPO hybrid approachfor analysis of the EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206

20. Sadiku and Matthew, Numerical Techniques in Electromagnetic, Numerical Techniques in Electromagnetic, 2nd edition, CRC Press, 2001.

21. Rao, S. M. and D. R. Wilton, "E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies," Electromagn., Vol. 10, 407-421, 1990.
doi:10.1080/02726349008908254

22. Bossavit, A., Whitney forms: A class of finite elements for three-dimensional computation in electromagnetism, IEE Proc., Vol. 135, 493-500, 1988.

23. Christie, I., D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz, "Finite element methods for second order differential equations withsignifican t first derivatives," International Journal for Numerical Methods in Engineering, Vol. 10, 1389-1396, 1976.
doi:10.1002/nme.1620100617

24. Costanzo, S. and G. Di Massa, "Near-field to far-field transformation withplanar spiral scanning," Progress In Electromagnetics Research, Vol. 73, 49-59, 2007.
doi:10.2528/PIER07031903

25. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, "Full wave analysis of RF signal attenuation in a roughsurface cave using a higher order time domain vector finite element method," J. Electromagn. Waves Appl., Vol. 20, 1695-1705, 2006.
doi:10.1163/156939306779292408

26. Zhang, Y. J. and E. P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," J. Electromagn. Waves Appl., Vol. 19, 1535-1546, 2005.
doi:10.1163/156939305775701813

27. Chen, K.-S., A. K. Fung, J. C. Shi, and H.-W. Lee, "Interpretation of backscattering mechanisms from non-Gaussian correlated randomly roughsurfaces," J. Electromagn. Waves Appl., Vol. 20, No. 1, 105-118, 2006.
doi:10.1163/156939306775777404

28. Fung, A. K. and N. C. Kuo, "Backscattering from multi-scale and exponentially correlated surfaces," J. Electromagn. Waves Appl., Vol. 20, No. 1, 3-11, 2006.
doi:10.1163/156939306775777378


© Copyright 2014 EMW Publishing. All Rights Reserved