PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 80 > pp. 179-196

ENHANCEMENT OF DIRECTIVITY USING 2D-ELECTROMAGNETIC CRYSTALS NEAR THE BAND-GAP EDGE: A FULL-WAVE APPROACH

By L. Pajewski, L. Rinaldi, and G. Schettini

Full Article PDF (498 KB)

Abstract:
A deep analysis of the directivity enhancement, due to the insertion of a simple linear antenna into a dielectric EBG, is presented. The operative frequency is chosen near a band-gap edge. The planewave expansion method is used in order to obtain the Bloch dispersion diagrams of infinite two-dimensional EBGs. A rigorous cylindricalwave approach is used to analyze two-dimensional EBGs with finite size, excited by a line source. We apply these tools to the analysis of different emitting devices, and propose solutions to improve their performances.

Citation:
L. Pajewski, L. Rinaldi, and G. Schettini, "Enhancement of directivity using 2D-electromagnetic crystals near the band-gap edge: a full-wave approach," Progress In Electromagnetics Research, Vol. 80, 179-196, 2008.
doi:10.2528/PIER07111504
http://www.jpier.org/PIER/pier.php?paper=07111504

References:
1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

2. De Maagt, P., R. Gonzalo, Y. C. Vardaxoglou, and J.- M. Baracco, "Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2667-2677, 2003.
doi:10.1109/TAP.2003.817566

3. Fernandes, H. C. C., J. L. G. Medeiros, M. A. Isnaldo, Jr., and D. B. Brito, "Photonic crystal at millimeter waves applications," PIERS Online, Vol. 3, 689-694, 2007.
doi:10.2529/PIERS060901105337

4. Qi, L., Z. Yang, Z. Liang, W. Liu, Y. Liu, and X. Gao, "Design of photonic crystal resonant cavity using overmoded dielectric photonic band gap structures," PIERS Online, Vol. 3, 379-381, 2007.
doi:10.2529/PIERS061007043414

5. Luan, P.-G. and K.-D. Chang, "Photonic-crystal lens coupler using negative refraction," PIERS Online, Vol. 3, 91-95, 2007.
doi:10.2529/PIERS060905234755

6. Fernandes, H. C. C. and G. D. F. Alves, "Multilayer planar resonators with superconductive patch on PBG substrate," PIERS Online, Vol. 3, 560-563, 2007.
doi:10.2529/PIERS060908155123

7. Hwang, C. G. and N. H. Myung, Novel phase noise reduction and harmonic improvement methods of an oscillator utilizing a CCPW EBG structure, PIERS Proceedings, Vol. '' S Proceedings, 2-5, 2006.

8. Fernandes, H. C. C., D. B. Brito, and J. L. G. Medeiros, EBG substrate in unilateral fin line resonator, PIERS Proceedings, Vol. '' S Proceedings, 27-30, 2007.

9. Tomljenovic-Hanic, S., C. M. de Sterke, M. J. Steel, and D. J. Moss, "Design of high-Q cavities in photosensitive materialbased photonic crystal slab heterostructures," PIERS Online, Vol. 3, 233-235, 2007.
doi:10.2529/PIERS060907042030

10. Boutayeb, H. and T. A. Denidni, "Analysis and design of a high-gain antenna based on metallic crystals," Journal of Electromagnetic Waves and Applications, Vol. 20, 599-614, 2006.
doi:10.1163/156939306776137755

11. Sigalas, M. M., R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs- Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band-gap crystals — Experiment and simulation," Microwave and Opt. Technol. Lett., Vol. 15, 153-158, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<153::AID-MOP10>3.0.CO;2-8

12. Yang, F., V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, "Enhancement of printed dipole antennas characteristics us ing semi-EBG ground plane," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306776930330

13. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

14. Leung, W. Y., R. Biswas, S. D. Cheng, M. M. Sigalas, J. S. McCalmont, G. Tuttle, and K. M. Ho, "Slot antennas on photonic band gap crystals," IEEE Trans. Antennas Propag., Vol. 45, No. 8, 1569-1570, 1997.
doi:10.1109/8.633871

15. Weily, A. R., L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, "A planar resonator antenna based on a woodpile EBG material," IEEE Trans. Antennas and Propagat., Vol. 53, No. 1, 216-223, 2005.
doi:10.1109/TAP.2004.840531

16. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patchantenna performance by suppressing surface waves using photonicbandgap substrates," IEEE Trans. on Microwave Theory Tech., Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009

17. Coccioli, R., F. Yang, K. Ma, and T. Itoh, "Aperturecoupled patch antenna on UC-PBG substrate," IEEE Trans. on Microwave Theory Tech., Vol. 47, No. 11, 2123-2130, 1999.
doi:10.1109/22.798008

18. Colburn, J. S. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Trans. Antennas Propagat., Vol. 47, No. 12, 1785-1794, 1999.
doi:10.1109/8.817654

19. Brown, E. R., C. D. Parker, and E. Yablonovith, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B, Vol. 10, No. 2, 404-407, 1993.

20. Yang, F. and Y. Rahmat-Samii, "A low profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface," Microw. Opt. Tech. Lett., Vol. 31, No. 4, 264-267, 2001.
doi:10.1002/mop.10006

21. Thevenot, M., A. Reineix, and B. Jecko, "A dielectric photonic parabolic reflector," Microw. Opt. Tech. Lett., Vol. 21, No. 6, 411-414, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<411::AID-MOP5>3.0.CO;2-L

22. Li, L., C. H. Liang, and C. H. Chan, "Waveguide end-slot phased array antenna integrated with electromagnetic bandgap structures," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 161-174, 2007.
doi:10.1163/156939307779378826

23. Ganatsos, T., K. Siakavara, and J. N. Sahalos, "Neural networkbased design of EBG surfaces for effective polarization diversity of wireless communications antenna systems," PIERS Online, Vol. 3, No. 8, 1165-1169, 2007.
doi:10.2529/PIERS070215124728

24. Hosseini, M., A. Pirhadi, and M. Hakkak, Design of a nonuniform high impedance surface for a low profile antenna, PIERS Proceedings, Vol. '' S Proceedings, 26-29, 2006.

25. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

26. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patchantenna performance by suppressing surface waves using photonicbandgap substrates," IEEE Trans. on Microwave Theory Tech., Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009

27. Yang, H. Y. D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Trans. on Antennas and Propagat., Vol. 45, No. 1, 185-187, 1997.
doi:10.1109/8.554261

28. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2115-2122, 1999.
doi:10.1109/22.798007

29. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Trans. Antennas Propagat., Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

30. Frezza, F., L. Pajewski, P. Nocito, and G. Schettini, "FDTD analysis of EBG superstrates," 2007 IEEE Workshop on Computational Electromagnetics in Time-Domain (CEM-TD), 15-17, 2007.

31. Qiu, M. and S. He, "High-directivity patch antenna with both photonic bandgap substrate and photonic cover," Microw. Opt. Tech. Lett., Vol. 30, No. 1, 41-44, 2001.
doi:10.1002/mop.1214

32. Enoch, S., G. Tayeb, and D. Maystre, "Dispersion diagrams of Bloch modes applied to the design of directive sources," Progress In Electromagnetic Research, Vol. 37, 61-81, 2002.

33. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A meta-material for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

34. Liu, Y., Z. Yang, Z. Liang, and L. Qi, "A memory-efficient strategy for the FDTD implementation applied to the photonic crystals problems," PIERS Online, Vol. 3, 374-378, 2007.
doi:10.2529/PIERS061002103800

35. Lin, M.-C. and R.-F. Jao, "Finite element analysis of photon density of states for two-dimensional photonic crystals with in plane light propagation," PIERS Online, Vol. 3, 315-319, 2007.
doi:10.2529/PIERS061007113530

36. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett., Vol. 69, 2772-2775, 1992.
doi:10.1103/PhysRevLett.69.2772

37. Frezza, F., L. Pajewski, and G. Schettini, "Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 941-951, 2003.
doi:10.1109/TMTT.2003.808696

38. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.

39. Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam, 1966.

40. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley and Sons, New York, 1989.

41. Di Vico, M., F. Frezza, L. Pajewski, and G. Schettini, "Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: a spectral-domain solution," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 2, 719-727, 2005.
doi:10.1109/TAP.2004.841315

42. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, 2006.


© Copyright 2014 EMW Publishing. All Rights Reserved