Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 82 > pp. 33-50


By M. Rajabvand, F. Behnia, and T. M. Fatehi

Full Article PDF (1,848 KB)

Tunability of fiber Bragg grating (FBG) in transition region is used to implement wavelength-selective optical intensity modulator, which superimposes a secondary low-speed data on the transit high-speed payload optical signal. Theoretical model of the device is developed and verified by measurements in the linear and nonlinear slopes of the FBG. Experiments with strong and relatively weak gratings confirm the wavelength-selectivity and stability of modulation. The fiber-based modulator is employed for optically tagging or labeling individual wavelength channels using baseband and amplitude-shift keying (ASK) modulated signals. The wavelengthselective channel labeling scheme is useful for the control and management of the optical circuits and services in WDM networks.

M. Rajabvand, F. Behnia, and T. M. Fatehi, "Transition Region Effects in Tunable Fiber-Based Wavelength-Selective Devices," Progress In Electromagnetics Research, Vol. 82, 33-50, 2008.

1. Lee, Y. J., J. Bae, K. Lee, J.-M. Jeong, and S. B. Lee, "Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating," IEEE Photon. Technol. Lett., Vol. 19, No. 10, 762-764, 2007.

2. Kwon, J., S. Kim, S. Roh, and B. Lee, "Tunable dispersion slope compensator using a chirped fiber Bragg grating tuned by a fanshaped thin metallic heat channel," IEEE Photon. Technol. Lett., Vol. 18, No. 1, 118-120, 2006.

3. Xia, L., P. Shum, M. Yan, Y. Wang, and T. H. Cheng, "Tunable and switchable fiber ring laser among four wavelengths with ultranarrow wavelength spacing using a quadruple-transmissionband fiber Bragg grating filter," IEEE Photon. Technol. Lett., Vol. 18, No. 19, 2038-2040, 2006.

4. Spiegelberg, C., J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, "Low-noise narrow-line width fiber laser at 1550 nm," J. Lightwave Technol., Vol. 22, No. 1, 57-62, 2004.

5. Fatehi, M. T., S. Jin, W. H. Knox, and H. Mavoori, Controllable wavelength-selective optical cross-connect, U.S. Pat. No. 6, 597, 481, 2003.

6. Kim, J., J. Jung, S. Kim, and B. Lee, "Reconfigurable optical cross-connect using WDM MUX/DEMUX pair and tunable fiber Bragg gratings," Electron. Lett., Vol. 36, No. 1, 67-68, 2000.

7. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.

8. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and ZnGeP2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.

9. Ibrahim, A.-B. M. A. and P. K. Choudhury, "Relative power distributions in omniguiding photonic band-gap fibers," Progress In Electromagnetics Research, Vol. 72, 269-278, 2007.

10. Rostami, A. and A. Yazdanpanah-Goharrizi, "A new method for classification and identification of complex fiber Bragg grating using the genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 329-356, 2007.

11. Lim, M. H., S. C. Yeow, P. K. Choudhury, and D. Kumar, "Towards the dispersion characteristics of tapered core dielectric optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1597-1609, 2006.

12. Gangwar, R., S. P. Singh, and N. Singh, "L-band superfluorescent fiber source," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2201-2204, 2007.

13. Gagliardi, R. M. and S. Karp, Optical Communications, 2nd Ed., Ch. 8, Wiley, 1995.

14. Moon, N. S. and K. Kikuchi, "N*N multiwavelength optical crossconnect based on tunable fiber Bragg gratings," J. Lightwave Technol., Vol. 21, No. 3, 703-718, 2003.

15. Tripathi, R., R. Gangwar, and N. Singh, "Reduction of crosstalk in wavelength division multiplexed fiber optic communication systems," Progress In Electromagnetics Research, Vol. 77, 367-378, 2007.

16. Chen, L. R., S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, "Ultrashort pulse reflection from fiber gratings: A numerical investigation," J. Lightwave Technol., Vol. 15, No. 8, 1503-1512, 1997.

17. Taverner, D., D. J. Richardson, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. A. Payne, "Experimental investigation of picosecond pulse reflection from fiber gratings," Opt. Lett., Vol. 20, No. 3, 282-284, 1995.

18. Mishra, M. and S. Konar, "High bit rate dense dispersion managed optical communication system with distributed amplification," Progress In Electromagnetics Research, Vol. 78, 301-320, 2008.

19. Biswas, A., "Stochastic perturbation of parabolic law optical solutions," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1479-1488, 2007.

20. Wu, J.-W. and H.-B. Bao, "Amplification, compression and shaping of picosecond super-Gaussian optical pulse using MZISOAs configuration," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2215-2228, 2007.

21. Liaw, S. K., K. P. Ho, and S. Chi, "Dynamic power-equalized EDFA module based on strain tunable fiber Bragg gratings," IEEE Photon. Technol. Lett., Vol. 11, No. 7, 797-799, 1990.

22. Zeng, F. and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett., Vol. 18, No. 19, 2062-2064, 2006.

23. Chang, G. K., J. Yu, A. Chowdhury, and Y. K. Yeo, "Optical carrier suppression and separation label-switching techniques," J. Lightwave Technol., Vol. 23, No. 10, 3372-3387, 2005.

24. Zhu, Z., Z. Pan, and S. J. B. Yoo, "A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks," IEEE Photon. Technol. Lett., Vol. 17, No. 2, 426-428, 2005.

25. Popov, M., A. Martinez, J. Capmany, D. Pastor, P. Y. Fonjallaz, and B. Ortega, "Fiber-Bragg-grating-based device for payload and label separation in highly packed subcarrier-multiplexed optical label swapping," IEEE Photon. Technol. Lett., Vol. 17, No. 11, 2445-2447, 2005.

26. Yang, J., M., Y. Jeon, J. Cao, Z. Pan, S. J. B. Yoo, and , "Performance monitoring in transparent optical networks using self-monitoring optical-labels," Electron. Lett., Vol. 40, No. 21, 1370-1372, 2004.

27. Lee, H. J., S. J. B Yoo, V. K. Tsui, and S. K. H. Fong, "A simple all-optical label detection and swapping technique incorporating a fiber Bragg grating filter," IEEE Photon. Technol. Lett., Vol. 13, No. 6, 635-637, 2001.

28. Hauer, M. C., J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R. Lyons, C. H. Lin, A. A. Au, H. P. Lee, D. S. Starodubov, and A. E. Wi, "Optically assisted internet routing using arrays of novel dynamically reconfigurable FBG-FBGbased," J. Lightwave Technol., Vol. 21, No. 11, 2765-2778, 2003.

29. Tian, C., Z. Zhang, M. Ibsen, M. R. Mokhtar, P. Petropoulos, and D. J. Richardson, Reconfigurable all-optical packet switching based on fiber Bragg gratings, OFC 2006 Anaheim, 2006.

30. Tarhuni, N., M. Elmusrati, and T. Korhonen, "Multi-class optical-CDMA network using optical power control," Progress In Electromagnetics Research, Vol. 64, 279-292, 2006.

31. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear super imposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetics Research, Vol. 77, 243-266, 2007.

32. Kogelnik, H., "Theory of optical waveguides," Guided-Wave Optoelectronics, T. Tamir (ed.), Springer-Verlag, New York, 1990.

33. Erdogan, T., "Fiber grating spectra," J. Lightwave Technol., Vol. 15, 1277-1294, 1997.

34. Iocco, A., H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, "Bragg grating fast tunable filter for wavelength division multiplexing," J. Lightwave Technol., Vol. 17, No. 7, 1217-1221, 1999.

35. Mohammad, N., W. Szyszkowski, W. J. Zhang, E. I. Haddad, J. Zou, W. Jamroz, and R. Kruzelecky, "Analysis and development of a tunable fiber Bragg grating filter based on axial tension/compression," J. Lightwave Technol., Vol. 22, No. 8, 2001-2013, 2004.

36. Inui, T., T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Optics Communications, Vol. 190, 1-4, 2001.

37. Feng, K. M., V. Grubsky, D. S. Starodubov, J. X. Cai, A. E. Willner, and J. Feinberg, "Tunable nonlinearly-chirped fiber Bragg grating for use as a dispersion compensator with a voltage-controlled dispersion," OFC ’98 Technical Digest, 72-74, 1998.

© Copyright 2014 EMW Publishing. All Rights Reserved