PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 87 > pp. 215-231

ANALYSIS OF CYLINDRICALLY CONFORMAL MICROSTRIP STRUCTURES USING AN ITERATIVE METHOD

By Y. Wang, Y.-J. Xie, and H. Feng

Full Article PDF (272 KB)

Abstract:
An efficient iterative method is presented for the fast analysis of cylindrically conformal microstrip structures. Based on the transmission line modeling (TLM) method and the fast modal transform (FMT) theory, this technique accelerates the process of the calculation by introducing the concept of the transverse electromagnetic waves instead of the transverse fields considered in the traditional algorithm. Within cylindrically stratified media, the transverse electromagnetic waves are represented by the hybrid modal basis functions. Ultimately, the specific form of the modal admittance and the spectral reflection matrix are deduced. Further more?the surface electric fields and electric currents of the cylindrically conformal microstrip antenna fed by means of a microstripline are calculated via the iterative process. On this basis, the input impedance of the antenna can also be obtained. And the results gained by utilizing iterative approach are compared with those from the published references to demonstrate the accuracy or efficiency of this method.

Citation:
Y. Wang, Y.-J. Xie, and H. Feng, "Analysis of cylindrically conformal microstrip structures using an iterative method," Progress In Electromagnetics Research, Vol. 87, 215-231, 2008.
doi:10.2528/PIER08102402
http://www.jpier.org/PIER/pier.php?paper=08102402

References:
1. Habashy, T. M., S. M. Ali, and J. A. Kong, "Input impedance and radiation pattern of cylindrical-rectangular and wraparound microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 38, No. 5, 722-731, 1990.
doi:10.1109/8.53500

2. Cooray, F. R. and J. S. Kot, "Analysis of radiation from a cylindrical-rectangular microstrip patch antenna loaded with a superstrate and an air gap using the electric surface current mode," Progress In Electromagnetics Research, Vol. 67, 135-152, 2007.
doi:10.2528/PIER06080304

3. Wong, K. L., Y. H. Liu, and C. Y. Huang, "Generalized transmission line model for cylindrical-rectangular microstrip antenna," Microwave and Optical Technology Letters, Vol. 7, No. 16, 729-732, 1994.
doi:10.1002/mop.4650071602

4. Luk, K. M., K. F. Lee, and J. S. Dahele, "Analysis of the cylindrical-rectangular mictrostrip patch antenna," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 143-147, 1989.
doi:10.1109/8.18699

5. Franklin, F. C., S. B. A. Fonseca, J. M. Soares, and A. J. Giarola, "Analysis of microstrip antennas on circular-cylindrical substrates with a dielectric overlay," IEEE Trans. Antennas Propagat., Vol. 39, No. 9, 1398-1403, 1991.
doi:10.1109/8.99050

6. Svezhentsev, A. Y., "Some far field features of cylindrical microstrip antenna on an electrically small cylinder," Progress In Electromagnetics Research B, Vol. 7, 223-244, 2008.
doi:10.2528/PIERB08032201

7. Erturk, V. B. and R. G. Rojas, "Efficient analysis of input impedance and mutual coupling of microstrip antennas mounted on large coated cylinders," IEEE Trans. Antennas Propagat., Vol. 51, No. 4, 739-749, 2003.
doi:10.1109/TAP.2003.811060

8. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

9. Tokgoz, C. and G. Dural, "Closed-form Green's functions for cylindrically stratified media," IEEE Trans. Microwave Theory and Tech., Vol. 48, No. 1, 40-49, 2000.
doi:10.1109/22.817470

10. Sun, J., C.-F.Wang, L.-W. Li, and M. -S. Leong, "Mixed potential spatial domain Green's functions in fast computational form for cylindrically stratified media," Progress In Electromagnetics Research, Vol. 45, 181-199, 2004.
doi:10.2528/PIER03071501

11. Acar, R. C. and G. Dual, "Mutual coupling of printed elements on a cylindrically layered structure using closed-form Green's functions," Progress In Electromagnetics Research, Vol. 78, 103-127, 2008.
doi:10.2528/PIER07082101

12. Sun, J., C.-F. Wang, L.-W. Li, and M.-S. Leong, "A complete set of spatial-domain dyadic Green's function components for cylindrically stratified media in fast computational form," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1491-1509, 2002.
doi:10.1163/156939302X00949

13. Li, L.-W., S. B. Yeap, M.-S. Leong, T.-S. Yeo, and P.-S. Kooi, "Eigenfunctional representation of dyadic Green's functions in cylindrically multilayered gyroelectric chiral media," Progress In Electromagnetics Research, Vol. 42, 143-171, 2003.
doi:10.2528/PIER03011701

14. Li, L.-W., M.-S. Leong, T.-S. Yeo, and P.-S. Kooi, "Electromagnetic dyadic Green's functions in spectral domain for multilayered cylinders," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 7, 961-986, 2000.

15. Silvester, P. P. and R. L. Ferrari, Finite Elements for Engineering, Cambridge University Press, Cambridge, U.K., 1990.

16. Titaouine, M., A. G. Neto, H. Baudrand, and F. Djahli, "WCIP method applied to active frequency selective surfaces," Journal of Microwave and Optoelectronics, Vol. 6, No. 1, 1-16, 2007.

17. Hajiaoui, E. A., H. Trabeisi, H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of multilayer substrates by multilayer contribution of wave concept itrative process," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1439-1445, 2007.
doi:10.1002/mop.22406

18. Mami, A., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of microstrip spiral inductor by using iterative method," Microwave and Optical Technology Letters, Vol. 35, No. 4, 302-306, 2002.
doi:10.1002/mop.10590

19. Raveu, N., T. P. Vuong, I. Terrasse, G.-P. Piau, and H. Baudrand, "Near fields evaluated with the wave concept iterative procedure method for an E-polarisation plane wave scattered by cylindrical strips," Microwave and Optical Technology Letters, Vol. 38, No. 5, 403-406, 2003.
doi:10.1002/mop.11074

20. Bdour, T., N. Ammar, T. Aguili, and H. Baudrand, "Modeling of wave penetration through cylindrical aperture using an iterative method based on transverse wave concept," IEEE Microwave Conference KJMW, 45-48, 2007.

21. Raveu, N., T. P. Vuong, I. Terrasse, G.-P. Piau, G. Fontgalland, and H. Baudrand, "Wave concept iterative procedure applied to cylinders," IEE Proceedings, Microwave, Antennas and Propagation, Vol. 151, No. 5, 409-416, 2004.
doi:10.1049/ip-map:20040763

22. Ammar, N., T. Bdour, T. Aguili, and H. Baudrand, "Investigation of electromagnetic scattering by arbitrarily shaped structures using the wave concept iterative process," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 7, No. 1, 26-43, 2008.

23. Bedira, R., A. Gharsallah, L. Desclos, A. Gharbiand, and H. Baudrand, "The wave concept iterative process: Scattering of a conducting target coated by a thin dielectric layer," AP-Symposium, Vol. 2, 98-101, 2002.

24. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.


© Copyright 2014 EMW Publishing. All Rights Reserved