PIER | |
Progress In Electromagnetics Research | ISSN: 1070-4698, E-ISSN: 1559-8985 |
Home > Vol. 90 > pp. 1-13
BROADBAND EXPERIMENTAL CHARACTERIZATION OF ARTIFICIAL MAGNETIC MATERIALS BASED ON A MICROSTRIP LINE METHODBy L. Yousefi, H. Attia, and O. M. RamahiAbstract: A broadband method is introduced to measure the effective constitutive parameters of artificial magnetic materials. The method is based on the microstrip line topology, thus making it easy to retrieve the constitutive parameters over a wide band of frequencies. To demonstrate the effectiveness of this method, artificial magnetic materials with Fractal Hilbert inclusions are fabricated and characterized. Good agreement between the experimental and numerical simulation results verifies the accuracy of the proposed method.
Citation:
References:
2. Adenot, A. L., O. Acher, T. Taffary, and L. Longuet, "Sum rules on the dynamic permeability of hexagonal ferrites," Journal of Applied Physics, Vol. 91, 7601-7603, 2002. 3. Acher, O. and A. L. Adenot, "Bounds on the dynamic properties of magnetic materials," Physical Review B, Vol. 62, No. 17, 11324-11327, 2000. 4. Yao, H. Y., L. W. Li, Q. Wu, and J. A. Kong, "Macroscopic performance analysis of metamaterials synthesized from micrsocopic 2-D isotropic cross split-ring resonator array," Progress In Electromagnetics Research, PIER 51, 197-217, 2005.
5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, Nov. 1999.
6. Bilotti, F., A. Alu, N. Engheta, and L. Vegni, "Anomalous properties of scattering from cavities partially loaded with double-negative or single-negative metamaterials," Progress In Electromagnetics Research, PIER 51, 49-63, 2005.
7. Maslovski, S., P. Ikonen, I. Kolmakov, and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, PIER 54, 61-81, 2005.
8. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech., Vol. 54, 135-146, Jan. 2006. 9. Yousefi, L. and O. M. Ramahi, "New artificial magnetic materials based on fractal hilbert curves," Proceeding of IWAT07, 237-240, 2007.
10. Ikonen, P. M. T., P. M. T., S. I. Maslovski, C. R. Simovski, and S. A. Tretyakov, "On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas," IEEE Trans. on Antenna Propagation, Vol. 54, 1654-1662, 2006. 11. Chen, L., C. K. Ong, and B. T. G. Tan, "Cavity perturbation technique for the measurement of permittivity tensor of uniaxially anisotropic dielectrics," IEEE Trans. Instrum. Meas., Vol. 48, 1023-1030, 1999. 12. Buell, K. and K. Sarabandi, "A method for characterizing complex permittivity and permeability of meta-materials," Proceeding of IEEE Antennas and Propagation Society International Symposium, Vol. 2, 408-411, 2002.
13. Greegor, R. B., C. G. Parazzoli, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental determination and numerical simulation of the properties of negative index of refraction materials," Optics Express, Vol. 11, 688-695, 2003.
14. Starr, A. F., P. M. Rye, D. R. Smith, and S. Nemat-Nasser, "Fabrication and characterization of a negative-refractive-index composite metamaterial," Physical Review B, Vol. 70, 113102, 2004. 15. Smith, D. R., D. Schurig, and J. J. Mock, "Characterization of a planar artificial magnetic metamaterial surface," Physical Review E, Vol. 74, 036604, 2006. 16. Damascos, N. J., R. B. Mack, A. L. Maffett, W. Parmon, and P. L. E. Uslenghi, "The inverse problem for biaxial materials," IEEE Trans. Microwave Theory and Tech., Vol. 32, No. 4, 400-405, 1984. 17. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optics Express, Vol. 14, No. 26, 12944-12949, 2006. 18. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1096-1103, 1990. 19. Queffelec, P., P. Gelin, J. Gieraltowski, and J. Loaec, "A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity," IEEE Transactions on Magnetics, Vol. 30, No. 2, 224-231, 1994. 20. Heping, Y., K. Virga, and J. Prince, "Dielectric constant and loss tangent measurement using a stripline fixture," IEEE Trans. on Advanced Packaging, Vol. 21, 441-446, 1999.
21. Hinojosa, J., L. Faucon, P. Queffelec, and F. Huret, "S-parameter broadband measurements of microstrip lines and extraction of the substrate intrinsic properties," Microwave and Optical Technology Letters, Vol. 30, No. 1, 65-69, 2001. 22. Bekker, V., K. Seemann, and H. Leiste, "A new strip line broad-band measurement evaluation for determining the complex permeability of thin ferromagnetic films," Journal of Magnetism and Magnetic Materials, Vol. 270, No. 3, 327-332, 2004. 23. Hinojosa, J., "Permittivity characterization from open-end microstrip line measurements," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1371-1371, 2007. 24. Wheeler, H. A., "Transmission-line properties of parallel strips separated by a dielectric sheets," IEEE Trans. Microwave Theory Tech., Vol. 13, No. 2, 172-185, 1965. 25. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates," IEEE Trans. Microwave Theory Tech., Vol. 20, 304-313, 1972. 26. Dennis, J. E. and R. B. Schnabel, "Numerical methods for unconstrained optimization and nonlinear equations,", New Jersey, Prentice-Hall, USA, 1983.
|