Vol. 90
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-02-11
Four-Dimensional Electrical Capacitance Tomography Imaging Using Experimental Data
By
Progress In Electromagnetics Research, Vol. 90, 171-186, 2009
Abstract
Electrical capacitance tomography (ECT) is a relatively mature non-invasive imaging technique that attempts to map dielectric permittivity of materials. ECT has become a promising monitoring technique in industrial process tomography especially in fast flow visualization. One of the most challenging tasks in further development of ECT for real applications are the computational aspects of the ECT imaging. Recently 3D ECT has gained interest because of its potential to generate volumetric images. Computational time of image reconstruction in 3D ECT makes it more difficult for real time applications. In this paper we present a robust and computationally efficient 4D image reconstruction algorithm applied to real ECT data. The method takes advantage of temporal correlation between 3D ECT frames to reconstruct movies 4D of dielectric maps, which enhance the noise performance of and its computational efficiency, improves the speed of ECT image reconstruction. The 4D image reconstruction results are presented for experimental data from fast moving object.
Citation
Manuchehr Soleimani, Cathryn N. Mitchell, Robert Banasiak, Radoslaw Wajman, and Andy Adler, "Four-Dimensional Electrical Capacitance Tomography Imaging Using Experimental Data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202
References

1. Adler, A., T. Dai, and W. R. B. Lionheart, "Temporal image reconstruction in electrical impedance tomography," Physiol. Meas., Vol. 28, S1-S11, 2007.
doi:10.1088/0967-3334/28/7/S01

. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1565-1574, 2008.
doi:10.1163/156939308786390021

3. Cheng, X. X., B. I. Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, PIER 84, 11-26, 2008.

4. Li, Y. and W. Q. Yang, "Image reconstruction by nonlinear Landweber iteration for complicated distributions," Meas. Sci. Technol., Vol. 19, 094014(8pp), 2008.

5. Huang, C. H., Y. F. Chen, and C. C. Chiu, "Permittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.1163/156939307779378790

6. Franceschini, G., M. Donelli, D. Franceschini, M. Benedetti, P. Rocca, and A. Massa, "Microwave imaging from amplitude-only data-advantages and open problems of a two-step multi-resolution strategy," Progress In Electromagnetics Research, PIER 83, 397-412, 2008.

7. Marashdeh, Q., W. Warsito, L. S. Fan, and F. L. Teixeira, "A nonlinear image reconstruction technique for ECT using a combined neural network approach," Meas. Sci. Technol., Vol. 17, No. 8, 2097-2103, 2006.
doi:10.1088/0957-0233/17/8/007

8. Nurge, M. A., "Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry," Meas. Sci. Technol., Vol. 18, No. 5, 1511-1520, 2007.
doi:10.1088/0957-0233/18/5/042

9. Olszewski, T., P. Brzeski, J. Mirkowski, A. Pl»askowski, W. Smolik, and R. Szabatin, "Modular capacitance tomograph," Proc. 4th International Symposium on Process Tomography in Warsaw, 2006.

10. Romanowski, A., , K. Grudzien, R. Banasiak, R. A. Williams, and D. Sankowski, "Hopper flow measurement data visualization: Developments towards 3D," Proc. 5th World Congress on Industrial Process Tomography, Bergen, Norway, 2006.

11., Seppanen, A., M. Vauhkonen, P. Vauhkonen, E. Somersalo, and J. P. Kaipio, "Fluid dynamical models and state estimation in process tomography: Effect due to inaccuracies in flow fields," Journal of Electronic Imaging, Vol. 10, No. 3, 630-640, 2001.
doi:10.1117/1.1379976

12. Schmitt, U. and A. K. Louis, "Efficient algorithms for the regularization of dynamic inverse problems --- Part I: Theory," Inverse Problems, Vol. 18, 645-658, 2002.
doi:10.1088/0266-5611/18/3/308

13. Schmitt, U., A. K. Louis, C. H. Wolters, and M. Vauhkonen, "Efficient algorithms for the regularization of dynamic inverse problems: II. Applications," Inverse Problems, Vol. 18, No. 1, 659-676, 2002.
doi:10.1088/0266-5611/18/3/309

14. Serdyuk, V. M., "Dielectric study of bound water in grain at radio and microwave frequencies," Progress In Electromagnetics Research, 379-406, 2008.
doi:10.2528/PIER08081103

15. Soleimani, M., "Three-dimensional electrical capacitance tomog-raphy imaging," Insight, Non-destructive Testing and Condition Monitoring, Vol. 48, No. 10, 613-617, 2006.
doi:10.1784/insi.2006.48.10.613

16. Soleimani, M., M. Vauhkonen, W. Q. Yang, A. J. Peyton, B. S. Kim, and X. Ma, "Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter," Meas. Sci. Tech., Vol. 18, No. 11, 3287-3294, 2007.
doi:10.1088/0957-0233/18/11/004

17. Soleimani, M., H. Wang, Y. Li, and W. Yang, "A comparative study of three dimensional electrical capacitance tomography," International Journal for Information Systems Sciences, Vol. 3, No. 2, 283-291, 2007.

18. Wajman, R., R. Banasiak, L. Mazurkiewicz, D. Dyakowski, and D. Sankowski, "Spatial imaging with 3D capacitance measurements," Meas. Sci. Technol., Vol. 17, No. 8, 2113-2118, 2006.
doi:10.1088/0957-0233/17/8/009

19. Warsito, W., Q. Marashdeh, and L. S. Fan, "Electrical capacitance volume tomography," IEEE Sensors Journal, Vol. 7, No. 3-4, 525-535, 2007.
doi:10.1109/JSEN.2007.891952

20. Warsito, W. and L.-S. Fan, "Development of 3-dimensional electrical capacitance tomography based on neural network multi-criterion optimization image reconstruction," Proc. 3rd World Congress on Industrial Process Tomography (Banff), 942-947, 2003.

21. Warsito, W. and L. S. Fang, "Imaging the bubble behavior using the 3-D electric capacitance tomograph," Chem. Eng. Sci., Vol. 60, No. 22, 6073-6084, 2005.
doi:10.1016/j.ces.2005.01.033

22. Yang, W. Q., "Key issues in designing capacitance tomography sensors," IEEE Conference on Sensors, 497-505, Daegu, Korea, October 22-25, 2006.

23. Yang, W. Q. and G. L. Pen, "Review of image reconstruction algo-rithms for electrical capacitance tomography, Part 1: Principles," Proc. International Symposium on Process Tomography in Poland (Wroclaw), 123-132, 2002.

24. Zacharopoulos, A. and S. Arridge, "3D shape reconstruction in optical tomography using spherical harmonics and BEM," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1827-1836, 2006.
doi:10.1163/156939306779292165

25. Zhong, X. M., C. Liao, W. Chen, Z. B. Yang, Y. Liao, and F. B. Meng, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786