PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 99 > pp. 225-244

SPECIALTY FIBERS DESIGNED BY PHOTONIC CRYSTALS

By N. Nozhat and N. Granpayeh

Full Article PDF (295 KB)

Abstract:
In this paper, several kinds of photonic crystal fibers (PCFs) have been proposed and characterized. Two types of PCF structures have been proposed, air holes in silica or silica rods in air in a triangular lattice around the core. It has been shown that by reshaping the cladding holes, varying the diameters of the holes in one or two rows around the core or changing the refractive index of the holes, different types of specialty fibers, such as dispersion shifted fibers (DSFs), non-zero dispersion shifted fibers (NZ-DSFs), dispersion flattened fibers (DFFs), dispersion compensating fibers (DCFs), and polarization maintaining fibers (PMFs), can be designed. The PCF core is silica to support the propagation of lightwave by total internal reflection (TIR) in the third telecommunication window. The chromatic dispersion, confinement loss and modal birefringence of the proposed specialty fibers have been numerically derived.

Citation:
N. Nozhat and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309
http://www.jpier.org/PIER/pier.php?paper=09092309

References:
1. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2003.

2. Saitoh, K. and M. Koshiba, "Numerical modeling of photonic crystal fibers," IEEE J. Lightwave Technol., Vol. 23, 3580-3590, 2005.
doi:10.2528/PIERM08021805

3. Pourkazemi, A. and M. Mansourabadi, "Comparison of fundamental space-filling mode index, effective index and the second and third order dispersion of photonic crystal fibers calculated by scalar effective index method and empirical relations methods," Progress In Electromagnetics Research M, Vol. 1, 197-206, 2008.
doi:10.1364/JOSAB.20.000443

4. Lægsgaard, J., A. Bjarklev, and S. E. B. Libori, "Chromatic dispersion in photonic crystal fibers fast and accurate scheme for calculation," J. Opt. Soc. Am. B, Vol. 20, 443-448, 2003.
doi:10.1364/OPEX.13.000267

5. Saitoh, K. and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express, Vol. 13, 267-274, 2004.

6. Uranus, H. P., H. J. W. M. Hoekstra, and E. Van Groesen, "Modes of an endlessly single-mode photonic crystal fiber: A finite element investigation," Proc. 11th IEEE Symp. Commun. and Vehicular Technol. (SCVT), Ghent University, Gent, Belgium, 2004.
doi:10.1364/JOSAA.22.001655

7. Poli, F., M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, "Single-mode regime of square-lattice photonic crystal fibers," J. Opt. Soc. Am. B, Vol. 22, 1655-1661, 2005.
doi:10.1088/1464-4258/7/12/009

8. Antkowiak, M., R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibers," J. Opt. A: Pure Appl. Opt., Vol. 7, 763-766, 2005.
doi:10.1016/j.optlastec.2005.07.008

9. Wang, J., C. Jiang, W. Hu, and M. Gao, "Properties of index-guided PCF with air-core," Optics and Laser Technol., Vol. 39, 317-321, 2007.
doi:10.1109/LPT.2006.890040

10. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE J. Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1016/j.optcom.2008.05.008

11. Yang, T. J., L. F. Shen, Y. F. Chau, M. J. Sung, D. Chen, and D. P. Tsai, "High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding," Opt. Commun., Vol. 281, 4334-4338, 2008.
doi:10.1093/ietele/e91-c.1.113

12. Hai, N. H., Y. Namihir, F. Begum, S. F. Kaijage, T. Kinjo, S. M. A. Razzak, and N. Zou, "A novel photonic crystal fiber design for large effective area and high negative dispersion," IEICE Trans. Electron., Vol. E91-C, 113-116, 2008.

13. Guenneau, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.
doi:10.2528/PIERL09061804

14. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimention elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.1016/j.optcom.2007.09.041

15. Haxha, S. and H. Ademgil, "Novel design of photonic crystal fibers with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area," Opt. Commun., Vol. 281, 278-286, 2008.
doi:10.1016/j.optcom.2007.12.006

16. Chen, M. and S. Xie, "New nonlinear and dispersion flattened photonic crystal fiber with low confinement loss," Opt. Commun., Vol. 281, 2073-2076, 2008.
doi:10.1016/j.optcom.2005.08.008

17. Chiang, J. S. and T. L. Wu, "Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF)," Opt. Commun., Vol. 258, 170-176, 2006.
doi:10.1016/j.optcom.2007.09.035

18. Musin, R. R. and A. M. Zheltikov, "Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm," Opt. Commun., Vol. 281, 567-572, 2008.

19. Kim, S., C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc., Vol. 49, 1434-1437, 2006.
doi:10.1364/OE.16.000007

20. Cho, M., J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express, Vol. 16, 7-12, 2008.
doi:10.1364/OE.9.000676

21. Suzuki, K., H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express, Vol. 9, 676-680, 2001.
doi:10.1049/el:20046362

22. Ortigosa-Blanch, A., A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Temperature independence of birefringence and group velocity dispersion in photonic crystal fibers," Electron. Lett., Vol. 40, 1327-1329, 2004.
doi:10.2529/PIERS060910211527

23. Song, W., Y. Zhao, Y. Bao, S. Li, Z. Zhang, and T. Xu, "Numerical simulation and analysis on mode property of photonic crystal fiber with high birefringence by fast multipole method," PIERS Online, Vol. 3, No. 6, 836-841, 2007.
doi:10.2529/PIERS041209062952

24. Wang, L. and D. X. Yang, "A new design for terahertz photonic crystal fiber using the finite-difference time-domain method," PIERS Online, Vol. 1, No. 2, 133-136, 2005.

25. Wu, J.-J., T.-J. Yang, K.-L. Liao, D. Chen, and L. F. Shen, "Highly birefringent Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," PIERS Proceedings, 185-188, Beijing, China, Mar. 23-27, 2009.

26. Chu, S. T. and S. K. Chaudhuri, "Finite-difference time-domain method for optical waveguide analysis," Progress In Electromagnetics Research, Vol. 11, 255-300, 1995.
doi:10.2528/PIER04042901

27. Kashani, Z. G., N. Hojjat, and M. Shahabadi, "Full-wave analysis of coupled waveguides in a two-dimensional photonic crystal," Progress In Electromagnetics Research, Vol. 49, 291-307, 2004.
doi:10.1163/156939307783134452

28. Manzanares-Martínez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.2528/PIER05062103

29. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of Mur's absorbing boundaries with periodic structures to speed up the design process using finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIERB08121603

30. El-Mashade, M. B. and M. N. Abdel Aleem, "Analysis of ultra-short pulse propagation in nonlinear optical fiber," Progress In Electromagnetics Research B, Vol. 12, 219-241, 2009.
doi:10.2528/PIERB09012302

31. Sha, W. E. I., X.-L. Wu, Z.-X. Huang, and M.-S. Chen, "Waveguide simulation using the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.

32. Wei, B., S.-Q. Zhang, Y.-H. Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.

33. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, 2005.

34. Agrawal, G. P., Nonlinear Fiber Optics, 4th Ed., Academic Press, Boston, 2007.
doi:10.1016/j.optlastec.2007.09.012

35. Li, S., Y. Li, Y. Zhao, G. Zhou, Y. Han, and L. Hou, "Correlation between the birefringence and the structural parameter in photonic crystal fiber," Opt. and Laser Technol., Vol. 40, 663-667, 2008.
doi:10.1364/OE.11.002799

36. Hwang, I. K., Y. J. Lee, and Y. H. Lee, "Birefringence induced by irregular structure in photonic crystal fiber," Opt. Express, Vol. 11, 2799-2806, 2003.

37. Keiser, G., Optical Fiber Communications, 3rd Ed., McGraw-Hill, New York, 2000.

38. Seraji, F. E., M. Rashidi, and M. Karimi, "Characteristics of holey fibers fabricated at different drawing speeds," Chinese Opt. Lett., Vol. 5, 131-134, 2007.


© Copyright 2014 EMW Publishing. All Rights Reserved