Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 100 > pp. 351-379


By T. Jorge-Mora, M. Alvarez Folgueiras, J. M. Leiro-Vidal, F. J. Jorge-Barreiro, F. J. Ares-Pena, and E. López-Martin

Full Article PDF (1,311 KB)

Physical agents such as non-ionizing continuous-wave 2.45 GHz radiation may cause damage that alters cellular homeostasis and may trigger activation of the genes that encode heat shock proteins (HSP). We used Enzyme-Linked ImmunoSorbent Assay (ELI-SA) and immunohistochemistry to analyze the changes in levels of HSP-90 and its distribution in the brain of Sprague-Dawley rats, ninety minutes and twenty-four hours after acute (30 min) continuous exposure to 2.45 GHz radiation in a the Gigahertz Transverse Electromagnetic (GTEM cell). In addition, we studied further indicators of neuronal insult: dark neurons, chromatin condensation and nucleus fragmentation, which were observed under optical conventional or fluorescence microscopy after DAPI staining. The cellular distribution of protein HSP-90 in the brain increased with each corresponding (0.034 ± 3.10-3, 0.069 ± 5.10-3, 0.27 ± 21.10-3 W/kg), in hypothalamic nuclei, limbic cortex and somatosensorial cortex after exposure to the radiation. At twenty-four hours post-irradiation, levels of HSP-90 protein remained high in all hypothalamic nuclei for all SARs, and in the parietal cortex, except the limbic system, HSP-90 levels were lower than in non-irradiated rats, almost half the levels in rats exposed to the highest power radiation. Non-apoptotic cellular nuclei and a some dark neurons were found ninety minutes and twenty-four hours after maximal SAR exposure. The results suggest that acute exposure to electromagnetic fields triggered an imbalance in anatomical HSP-90 levels but the anti-apoptotic mechanism is probably sufficient to compensate the non-ionizing stimulus. Further studies are required to determine the regional effects of chronic electromagnetic pollution on heat shock proteins and their involvement in neurological processes and neuronal damage.

T. Jorge-Mora, M. Alvarez Folgueiras, J. M. Leiro-Vidal, F. J. Jorge-Barreiro, F. J. Ares-Pena, and E. López-Martin, "Exposure to 2.45 GHz microwave radiation provokes cerebral changes in induction of hsp-90 α/β heat shock protein in rat.," Progress In Electromagnetics Research, Vol. 100, 351-379, 2010.

1. Otto, M. and K. E. V. Muhlendahl, "International Journal of Hygiene and Environmental Health,", Vol. 210, 635-644, 2007.

2. Radzievsky, A. A., O. V. Gordiienko, S. Alekseev, I. Szabo, A. Cowan, and M. C. Ziskin, "Electromagnetic millimiter wave induced hypoalgesia: Frequency dependence and involvement of endogenus opioids," Bioelectromagnetics, Vol. 29, 284-295, 2008.

3. Wang, J., S. Koyama, Y. Komatsubar, Y. Suzuki, M. Taki, and J. Miyakoshi, "Effects of a 2450MHz high-frequency electromagnetic field with a wide range of SARs on the induction of heat-shock proteins in A172 cells ," Bioelectromagnetics, Vol. 27, 479-486, 2006.

4. Tian, F., T. Nakahara, K. Wake, M. Taki, and J. Miyakoshi, "Exposure to 2.45 GHz electromagnetic fields induces HSP70 at a high SAR of more than 20 W/kg but not at 5 W/kg but not at 5 W/kg in human glioma MO54 cells," International Journal of Radiation Biology, Vol. 78, No. 5, 433-440, 2002.

5. Paulraj, R. and J. Behari, "Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation," Electromagnetic Biology Medicine, Vol. 25, No. 1, 61-70, 2006.

6. Lee, S., D. Jhonson, K. Dubbar, H. Dong, X. J. Ge, Y. C. Kim, C. Wing, N. Yayathilaka, N. Emmanuel, C. Q. Zhou, H. L. Gerber, and C. C. Tsen, "2.45 GHz radiofrequency fields alter gene expression in cultured human cells," FEBS Letters, Vol. 579, No. 21, 4829-4836, 2005.

7. Didelot, C., E. Schmitt, M. Brunet, L. Maingret, A. Parcellier, and C. Garrido, "Heat shock proteins: Endogenous modulators of apoptotic cell death ," Handb. Exp. Pharmacol., Vol. 172, 171-198, 2006.

8. De Pomerai, D., B. Smith, A. Dawe, K. North, T. Smith, D. Archer, I. Duce, D. Jones, and E. Candido, "Microwave radiation can alter protein conformation without bulk heating," FEBS Letters, Vol. 543, No. 1--3, 93-97, 2003.

9. Caraglia, M., M. Marra, F. Mancinelli, G. D'Ambrosio, R. Massa, A. Giordano, A. Budillon, A. Abbruzzese, and E. Bismuto, "Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of multi-chaperone complex in human epidermid cancer cells," Journal of Cellular Physiology, Vol. 204, 539-548, 2005.

10. Sreedhae, A. S., G. Nardai, and P. Csermeley, "Enhacement of complement induced cell lysis: A novel mechanism for the anticancer e®ects of HSP-90 inhibitors ," Inmunology letters, Vol. 92, 157-161, 2004.

11. Loones, M. T., Y. H. Chang, and M. Morange, "The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggest a role in neuronal and non neuronal differentiation," Cell Stress Chaperones, Vol. 5, No. 4, 291-305, 2000.

12. Gass, P., H. Schroder, P. Prior, and M. Kiessling, "Constitutive expression of heat shock protein 90 (HSP90) in neurons of the rat brain," Neuroscience Letter, Vol. 182, No. 2, 188-192, 1994.

13. D`Souza, S. M. and I. R. Brown, "Constitutive expression of heat shock proteins HSP-90, HSP-70 and HSP-60 in neuronal and non neuronal tissues of the rat during postnatal development ," Cell Stress Chaperonas, Vol. 3, 188-199, 1998.

14. Scheibel, T. and J. Buchner, "The HSP90 complex-a super-chaperone machine as a novel drug target," Biochem. Pharmacol., Vol. 56, No. 6, 675-682, 1998.

15. Pratt, W. B., The role of the HSP90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase , Annu. Rev. Pharmacol. Toxicol., Vol. 37, 297-326, 1997.

16. Someren, J. S., L. E. Faber, J. D. Klein, and J. A. Tumlin, "Heat shock proteins 70 and 90 increase calcineurin activity in vitro through calmodulin-dependent and independent mechanisms,", Vol. 260, No. 3, 619-625, 1999.

17. Garnier, C., P. Barbier, R. Gilli, C. Lopez, V. Peyrot, and C. Briand, "Heat-shock protein 90 (HSP90) binds in vitro to tubulin dimer and inhibits microtubule formation," Biochem. Biophys. Res. Commun., Vol. 250, No. 2, 414-419, 1998.

18. Miyata, Y. and I. Yahara, "Cytoplasmic 8 S glucocorticoid receptor binds to actin filaments through the 90-kDa heat shock protein moiety," J. Biol. Chem., Vol. 266, No. 14, 8779-8783, 1991.

19. Kawagoe, J., K. Abe, M. Aoki, and K. Kogore, "Induction of HSP-90α heat shock mRNA after transient global ischemia in gerbil hippocampus ," Brain Research, Vol. 621, 121-125, 1993.

20. Callahan, M. K., M. Garg, and P. K. Srivastava, "Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation ," Proc. Natl. Acad. Sci. USA., Vol. 105, No. 5, 1662-1667, 2008.

21. Adori, C., R. D. Ando, G. G. Kovacs, and G. Bagdy, "Damage of serotonergic axons and immunolocalization of HSP-27, HSP72, and HSP90 molecular chaperones after a single dose of MDMA administration in Dar Agouti rat: Temporal, spatial, and cellular patterns," The Journal of Comparative Neurology, Vol. 497, No. 2, 251-269, 2006.

22. Batulan, Z., D. M. Taylor, R. J. Aarons, S. Minotti, M. M. Doroudchi, J. Nalbantoglu, and H. D. Durham, "Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis," Neurobiol. Dis., Vol. 24, No. 2, 213-225, 2006.

23. Uryu, K., C. Richter-Landsberg, W.Welch, E. Sun, O. Goldbaum, E. H. Norris, C. T. Pham, I. Yazawa, K. Hilburger, M. Micsenyi, and B. I. Giasso, "Convergence of heat shock protein 90 with ubiquitin in ¯lamentous alpha-synuclein inclusions of alpha-synucleinopathies Am," J. Pathol., Vol. 168, No. 3, 947-961, 2006.

24. DelloRusso, C., P. PolaK, P. Mercado, A. Spagnolo, A. Sharp, P. Murphy, A. Kalman, J. Burrows, L. Fritz, and L. Feinstein, "The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygedanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis ," Journal of Neurochemestry, Vol. 99, 1351-1362, 2006.

25. Ohtsuka, K. and T. Suzuki, "Roles of molecular chaperones in the nervous system," Brain Research Bulletin, Vol. 53, No. 2, 141-146, 2000.

26. Jeon, S. G., S. W. Park, D. W. Kim, J. H. Seo, J. Y. Cho, S. Y. Lim, and S. D. Kim, "Glial expression of the 90-kDa heat shock protein (HSP-90) and the 94-kDa Glucose-regulated protein (GRP94) following an excitotoxic lesion in the mouse hippocampus ," Glia, Vol. 48, 250-258, 2004.

27. Lanneau, D., A. De Thonel, S. Maurel, C. Didelot, and C. Garrido, "Apoptosis versus cell di®erentiation," Prion., Vol. 1, 53-60, 2007.

28. Chiral, M., J. F. Grongnet, J. C. Plumier, and J. C. David, "Effects of hypoxia on stress proteins in the piglet brain at birth," Pediatric Research, Vol. 56, No. 5, 775-782, 2004.

29. Chauhan, V., A. Mariampillai, G. B. Gajda, A. Thansandote, and J. P. McNamee, "Analysis of pro-to-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field ," Int. J. Radiat. Biol., Vol. 82, No. 5, 347-354, 2006.

30. Jorge-Mora, M., J. Misa-Agusti~no, J. C. Bregains, F. J. Ares-Pena, F. J. Jorge-Barreiro, and E. Lopez-Martn, "Microwave exposure of rats to thermal and non-thermal 2.45 GHz radiation produces changes in neuronal expression of heat shock protein (HSP-90) ," Proceedings of Biological Effects of Electromagnetic Fields, EMF , Vol. 2, 1030-1034, 2006.

31. Misa-Agustino, M., J. Jorge-Mora, C. Bregains, F. J. Ares-Pena, F. J. Jorge-Barreiro, and E. Lopez-Martn, "Exposure of rat thyroid gland to 2450 MHz microwave induces changes in expression of HSP-90," Proceedings of Biological Effects of Electromagnetic Fields, EMF, Vol. 2, 960-233--173-9008, 2006.

32. Li, M., Y. Wang, Y. Zhang, Z. Zhou, and Z. Yu, "Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: A potential mechanism for cognition impairment following chronic low-power-density microwave exposure," J. Radiat. Res., Vol. 49, No. 2, 163-170, 2008.

33. Koenigstein, D. and D. Hansen, A new family of TEM-cells with enlargedbandwidth and optimized working volume , Proc. 7th Int. Zurich Symp. Elctromagn. Compat., 127-132, Zurich, Switzerland, 2007.

34. Schmid & Partner Engineering AG, Reference manual for the SEMCAD simulation plat-form for electromagnetic compatibility, antenna design and dosimetry , 2006, www.semcad.com.

35. Schaffner Electrotest Gmbh, GTEM Test Cells, Datasheet 2005, .

36. Paxinos, G. and C. H. Watson, The Rat Brain in Stereotaxic Coordinates, 4th Ed., Academic Press, London, 1998.

37. Perez, F. P., X. Zhou, J. Morisaki, and D. Jurivich, "Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response," Exp. Gerontol., Vol. 43, No. 4, 307-316, 2008.

38. Di Carlo, A., N. White, F. Guo, P. Garrett, and T. Litovitz, "Chronic electromagneticfield exposure decreases HSP70 levels and lowers cytoprotection," J. Cell Biochem., Vol. 84, No. 3, 447-454, 2002.

39. Huang, H., W. C. Lee, J. H. Lin, S. C. Jian, S. J. Mao, P. C. Yang, T. Y. Huang, and Y. C. Liu, "Molecular cloning and characterization of porcine cDNA encoding a 90-kDa heat shock protein and its expression following hyperthermia," Gene., Vol. 26, No. 2, 307-315, 1999.

40. Quraishi, H. and I. R. Brown, "Expression of heat shock protein 90(HSP90) in neural and nonneural tissues of control and hyperthermic rabbit ," Experimental Cell Research, Vol. 219, 358-363, 1995.

41. Ramaglia, V. and L. T. Buck, "Time-dependent expression of heat shock proteins 70 and 90 in tissues of anoxic western painted turtle ," The Journal of Experimental Biology, Vol. 207, 3775-3784, 2004.

42. Pignataro, L., A. N. Miller, L. Ma, S. Midha, P. Protiva, D. G. Herrera, and N. L. Harrison, "Alcohol regulates gene expression in neurons via activation of heat shock factor 1," J. Neurosci. 221, Vol. 27, No. 47, 12957-12966, 2007.

43. Lin, J. C., "Cellular telephone radiation and electroencephalo-grams (EEG) of the human brain," IEEE Antennas and Propagation Magazine, Vol. 45, No. 5, 150-153, 2003.

44. Martnez, A., Estudio y desarrollo de tecnicas de evaluacion de dosimetra electromagnetica y de niveles de exposicion a emisiones radiolelectricas, Doctoral tesis, 2004.

45. Institute of Electrical and Electronics Engineers, "IEEE standard for safety levels with respect to human exposure to radofrequency electromagnetic fields, 3 kHz to 300 GHz ," IEEE C95, 1-1999, Piscataway, NJ., 1999.

46. D'Andrea, J. A., J. M. Ziriax, and E. R. Adair, "Radio frequency electromagnetic ¯elds: Mild hyperthermia and safety standards," Prog. Brain Res., Vol. 162, 107-135, 2007.

47. Lopez-Martin, E., J. Bregains, J. L. Relova-Quinteiro, C. Cadarso-Suarez, F. J. Jorge Barreiro, and F. J. Ares Pena, "The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness ," Journal of Neuroscience Research, Vol. 87, 1484-1499, 2009.

48. Peinnequin, A., A. Piriou, J. Mathieu, V. Dabouis, C. Sebbah, R. Malabiau, and J. C. Debouzy, "Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line," Bioelectrochemistry, Vol. 51, No. 2, 157-161, 2000.

49. Hyland, G. J., "Physics and biology of mobile telephony," Lancet. 25, Vol. 356, No. 9244, 1833-1836, 2000.

50. Joels, M., "Corticosteroid actions in the hippocampus," J. Neuroendocrinol., Vol. 13, No. 8, 657-669, 2001.

51. Siegel, R., I. Chowers, N. Conforti, and S. Feldman, "Corti-cotrophin and corticosterone secretory patterns following acute neurogenic stress, in intact and in variously hypothalamic deaffer-ented male rats ," Brain Res. 28, Vol. 188, No. 2, 399-410, 1980.

52. Khan, M. G., E. Konde, F. Dossou, D. C. Labaree, R. B. Hochberg, and R. M. Hoyte, "Microwave-enhanced nucle-ophilic °uorination in the synthesis of fluoropyridyl derivatives of [3, 2-c] pyrazolo-corticosteroids, potential glucocorticoid receptor-mediated imaging agents ," Bioorg. Med. Chem. Lett. 1, Vol. 16, No. 13, 3454-3458, 2006.

53. Stagg, R. B., L. H. Hawel 3rd, K. Pastorian, C. Cain, W. R. Adey, and C. V. Byus, "Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA ," Radiat. Res., Vol. 155, No. 4, 584-592, 2001.

54. Djeridane, Y., Y. Touitou, and R. De Seze, "Influence of electromagnetic fields emitted by GSM-900 cellular telephones on the circadian patterns of gonadal, adrenal and pituitary hormones in men," Radiat. Res., Vol. 169, No. 3, 337-343, 2008.

55. Lopez-Martn, E., J. L. Relova-Quinteiro, R. Gallego-Gomez, M. Peleteiro-Fernandez, F. J. Jorge-Barreiro, and F. J. Ares-Pena, "GSM radiation triggers seizures and increases cerebral c-Fos positivity in rats pretreated with subconvulsive doses of picrotoxin ," Neurosci. Lett. 1, Vol. 398, No. 1-2, 139-144, 2006.

56. Lopez-Martin, E., J. Bregains, F. J. Jorge Barreiro, J. L. Sebastian-Franco, E. Moreno Piquero, and F. J. Ares Pena, "Set-up for measurement of the power absorbed from 900MHz GSM standing waves by small animals, illustrated by application to picrotoxin-treated rats," Progress In Electromagnetics Research, Vol. 87, 149-165, 2008.

57. Gallyas, F., F. Orsolya, and M. Mazlo, "Gel-to gel phase transition may occur in mammalian cells: Mechanism of formation of dark (compacted) neurons ," Biology of the Cell, Vol. 96, 313-324, 2004.

58. Gallyas, F., J. Pal, and P. Bukoviks, "Supravital microwave experiments support that the formation on dark neurons is propelled by phase transition in an intracellular gel system ," Brain Research, in press, 2009.

59. Ilhan, A., A. Gurel, F. Armutcu, S. Kamisli, M. Iraz, O. Akyol, and S. Ozen, "Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain," Clinica Chimica Acta, Vol. 340, 153-162, 2004.

60. Garrido, C., S. Gurbuxani, L. Ravagnan, and G. Kroemer, "Heat shock proteins: Endogenous modulators of apoptotic cell death ," Biochemical and Biophysical Research Communications, Vol. 286, 433-442, 2001.

© Copyright 2014 EMW Publishing. All Rights Reserved