PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 106 > pp. 335-347

PLASMONIC RESONANT LIGHT SCATTERING BY A CYLINDER WITH RADIAL ANISOTROPY

By Y. Jin, D. Gao, and L. Gao

Full Article PDF (457 KB)

Abstract:
We apply the full-wave electromagnetic theory to study electromagnetic scattering by a small cylindrical particle with radial anisotropy for normally incident light with transverse magnetic (TM) polarization. The scattering coefficients are derived, when the radial anisotropies in both the permittivity and permeability tensors are taken into account. It is shown that the surface and volume plasmon resonances can be identified by the sign of t/dq, in which εt is the permittivity element in a direction tangential to the local r-axis, and q is the size parameter. The near field distributions for surface and volume modes are illustrated by finite element method. It is found that small changes of anisotropy can affect the scattering efficiencies significantly. Moreover, the quadrupole and octupole resonant peaks may be much higher and sharper than those of dipole resonance in the scattering efficiency spectra.

Citation:
Y. Jin, D. Gao, and L. Gao, " plasmonic resonant light scattering by a cylinder with radial anisotropy ," Progress In Electromagnetics Research, Vol. 106, 335-347, 2010.
doi:10.2528/PIER10060601
http://www.jpier.org/PIER/pier.php?paper=10060601

References:
1. Tribelsky, M. I. and B. S. Luk'yanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
doi:10.1103/PhysRevLett.97.263902

2. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

3. Leonhardt, T., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

5. Chen, H. S., B.-I. Wu, B. L. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903

6. Qiu, C. W., A. Novitsky, H. Ma, and S. B. Qu, "Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks," Phys. Rev. E, Vol. 80, 016604, 2009.
doi:10.1103/PhysRevE.80.016604

7. Qiu, C. W., L. Hu, X. Xu, and Y. Feng, "Spherical cloaking with homogeneous isotropic multilayered structures," Phys. Rev. E, Vol. 79, 047602, 2009.
doi:10.1103/PhysRevE.79.047602

8. Cheng, Y. and X. J. Liu, "Three dimensional multilayered acoustic cloak with homogeneous isotropic materials," Appl. Phys. A, Vol. 94, 25-30, 2009.
doi:10.1007/s00339-008-4882-7

9. Qiu, C. W., L. Hu, B. Zhang, B. Wu, S. Johnson, and J. Joannopoulos, "Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings," Opt. Express, Vol. 17, 13467-13478, 2009.
doi:10.1364/OE.17.013467

10. Khlebtsov, N. G., "Optics and biophotonics of nanoparticles with a plasmon resonance," Quantum Electron., Vol. 38, 504-529, 2008.
doi:10.1070/QE2008v038n06ABEH013829

11. Hulst, V. D., Light Scattering by Small Particles, Dover, New York, 2000.

12. Kerker, M., The Scattering of the Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.

13. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Willey, New York, 1983.

14. Born, M., Principles of Optics, 2nd edition, University Press, Cambridge, 1999.

15. Luk'yanchuk, B. S. and M. I. Tribelsky, "Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials," J. Opt. A: Pure Appl. Opt., Vol. 9, S294-S300, 2007.
doi:10.1088/1464-4258/9/9/S03

16. Luk'yanchuk, B. S. and M. I. Tribelsky, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A, Vol. 89, 259-264, 2007.
doi:10.1007/s00339-007-4099-1

17. Luk'yanchuk, B. S. and C. W. Qiu, "Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials," Appl. Phys. A, Vol. 92, 773-776, 2008.
doi:10.1007/s00339-008-4572-5

18. Qiu, C. W. and B. S. Luk'yanchuk, "Peculiarities in light scattering by spherical particles with radial anisotropy," J. Opt Soc. Am. A, Vol. 25, 1623-1628, 2008.
doi:10.1364/JOSAA.25.001623

19. Luk'yanchuk, B. S. and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field," Phys. Rev. B, Vol. 73, 235432, 2006.
doi:10.1103/PhysRevB.73.235432

20. Monzon, J. C., "Two-dimensional scattering by a homogeneous anisotropic rod," IEEE Trans. Antennas Propag., Vol. 34, 1243-1249, 1986.
doi:10.1109/TAP.1986.1143739

21. Ren, W., X. B. Wu, Z. Yi, and W. G. Lin, "Properties of wave functions in homogeneous anisotropic media," Phy. Rev. E, Vol. 51, 671-679, 1995.
doi:10.1103/PhysRevE.51.671

22. Lucas, A. A., L. Henrard, and Ph. Lambin, "Computation of the ultraviolet absorption and electron inelastic scattering cross section of multishell fullerenes," Phys. Rev. B, Vol. 49, 2888-2896, 1994.
doi:10.1103/PhysRevB.49.2888

23. Sten, J. C. E., "DC fields and analytical image solutions for a radially anisotropic spherical conductor," IEEE Trans. Dielectr. Electr. Insul., Vol. 2, 360-367, 1995.
doi:10.1109/94.395424

24. Izotova, V. F., I. L. Maksimova, I. S. Nefedov, and S. V. Romanov, "Investigation of Mueller matrices of anisotropic nonhomogeneous layers in application to an optical model of the cornea," Appl. Optics, Vol. 36, 164-169, 1997.
doi:10.1364/AO.36.000164

25. Henrard, L. and P. Lambin, "Calculation of the eneregy loss for an electron passing near giant fullerenes," J. Phys. B, Vol. 29, 5127-5141, 1996.
doi:10.1088/0953-4075/29/21/024

26. Wu, Y., J. S. Li, Z. Q. Zhang, and C. T. Chan, "Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit," Phys. Rev. B, Vol. 74, 085111, 2006.
doi:10.1103/PhysRevB.74.085111

27. Gao, L., T. H. Fung, K. W. Yu, and C. W. Qiu, "Electromagnetic transparency by coated spheres with radial anisotropy," Phys. Rev. E, Vol. 78, 046609, 2008.
doi:10.1103/PhysRevE.78.046609

28. Gao, L. and X. Yu, "Optical bistability in nonlinear mixtures of coated inclusions with radial dielectric anisotropy," Phys. Lett. A, Vol. 335, 457-463, 2005.
doi:10.1016/j.physleta.2004.12.036

29. Yu, X. P. and L. Gao, "Nonlinear dielectric response in partially resonant composites with radial dielectric anisotropy," Phys. Lett. A, Vol. 359, 516-522, 2006.
doi:10.1016/j.physleta.2006.06.075

30. Lemelle, A., B. Veksler, I. S. Kozhevnikov, G. G. Akchurin, S. A. Piletsky, and I. Meglinski, "Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy," Laser Phys. Lett., Vol. 6, 71-75, 2009.
doi:10.1002/lapl.200810091


© Copyright 2014 EMW Publishing. All Rights Reserved