PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 108 > pp. 101-130

ELECTROMAGNETIC TRANSIENTS IN RADIO/MICROWAVE BANDS AND SURGE PROTECTION DEVICES

By C. Gomes and V. Cooray

Full Article PDF (824 KB)

Abstract:
A comprehensive review has been done on the types of electromagnetic transients that may affect low voltage electrical systems. The paper discusses various characteristics of lightning, switching, nuclear and intentional microwave impulses giving special attention to their impact on equipment and systems. The analysis shows that transients have a wide range of rise time, half peak width, action integral etc. with respect to both source and coupling mechanism. Hence, transient protection technology should be more specific with regard to the capabilities of the protection devices. Furthermore, we discuss the components and techniques available for the protection of low voltage systems from lightning generated electrical transients and the adequacy of International Standards in addressing the transient protection issues. The outcome of our analysis questions the suitability of 8/20 μs test current impulse in representing characteristics such as the time derivative and the energy content of lightning impulses. The 10/350 μs test current impulse better represents the integrated effects of the energy content of impulse component and long continuing current. A new waveform is required to be specified for testing the ability of protective devices to respond to the fast leading edges of subsequent strokes that may appear 100s of millisecond after the preceding stroke. The test voltage waveform 1.2/50 μs should also be modified to evaluate the response of protective devices for fast leading edges of induced voltage transients. A surge protective device that is tested for lightning transients may not be able to provide defense against other transients.

Citation:
C. Gomes and V. Cooray, "Electromagnetic Transients in Radio/Microwave Bands and Surge Protection Devices," Progress In Electromagnetics Research, Vol. 108, 101-130, 2010.
doi:10.2528/PIER10070304
http://www.jpier.org/PIER/pier.php?paper=10070304

References:
1. Sabaa, M. M. F., O. Pinto Jr., N. N. Solórzano, and A. Eybert-Berard, "Lightning current observation of an altitude-triggered flash," Atmospheric Research, Vol. 76, 402-411, 2005.
doi:10.1016/j.atmosres.2004.11.005

2. Bell, T. F., S. C. Reising, and U. S. Inan, "Intense continuing currents following positive cloud-to-ground lightning associated with red sprites," Geophysical Research Letters, Vol. 25, No. 8, 1285-1288, 15, 1998.
doi:10.1029/98GL00734

3. Thottappillil, R., J. D. Goldberg, V. A. Rakov, and M. A. Uman, "Properties of M-components from currents measured at triggered lightning channel base," Journal of Geophysical Research, Vol. 100, No. D12, 25, 711-25, 720, 1995.

4. Shindo, T. and M. A. Uman, "Continuing current in negative cloud to-ground lightning," Journal of Geophysical Research, Vol. 94, 5189-5198, 1989.
doi:10.1029/JD094iD04p05189

5. Rakov, V. A., M. A. Uman, K. J. Rambo, M. I. Fernandez, R. J. Fischer, G. H. Schnetzer, R. Thottappillil, A. Eybert-Berard, J. P. Berlandis, P. Lalande, A. Bonamy, P. Laroche, and A. Bondiou-Clergerie, "New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama," Journal of Geophysical Research, Vol. 103, 14 117-14 130, 1998.

6. Rakov, V. A., D. E. Crawford, K. J. Rambo, G. H. Schnetzer, and M. A. Uman, "M-component mode of charge transfer to ground in lightning discharges," Journal of Geophysical Research, Vol. 106, No. D19, 22817-22831, October 16, 2001.
doi:10.1029/2000JD000243

7. Fisher, R. J., G. H. Schnetzer, R. Thottappillil, V. A. Rakov, M. A. Uman, and J. D. Goldberg, "Parameters of triggered-lightning flashes in florida and alabama," Journal of Geophysical Research, Vol. 98, No. D12, 22887-22902, 1993.
doi:10.1029/93JD02293

8. Qie, X., Y. Zhao, Q. Zhang, J. Yang, G. Feng, X. Kong, Y. Zhou, T. Zhang, G. Zhang, T. Zhang, D. Wang, H. Cui, Z. Zhao, and S. Wu, "Characteristics of triggered lightning during Shandong artificial triggering lightning experiment (SHATLE)," Atmospheric Research, Vol. 91, 310-315, 2009.
doi:10.1016/j.atmosres.2008.08.007

9. Zhang, Q., X. Qie, Z. Wang, T. Zhang, Y. Zhao, J. Yang, and X. Kong, "Characteristics and simulation of lightning current waveforms during one artificially triggered lightning," Atmospheric Research, Vol. 91, 387-392, 2009.
doi:10.1016/j.atmosres.2008.04.015

10. Depasse, P., "Statistics on artificially triggered lightning," Journal of Geophysical Research, Vol. 99, No. D9, 18515-18522, 1994.
doi:10.1029/94JD00912

11. Berger, K., R. B. Anderson, and H. Kröninger, "Parameters of lightning flashes," CIGRE Electra, No. 41, 23-37, 1975.

12. Anderson, R. B. and A. J. Eriksson, "Lightning parameters for engineering application," CIGRE Electra, Vol. 69, 65-102, 1980.

13. Arturo, G. D., "Simulation of lightning electromagnetic fields and their interaction with low voltage power installations,", Ph.D. Thesis, Uppsala University Sweden, 2000.

14. Silfverskiold, S., R. Thottappillil, M. Ye, V. Cooray, and V. Scuka, "Induced voltages in a low-voltage power installation network due to lightning electromagnetic fields: An experimental study," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, No. 3, August 1999.
doi:10.1109/15.784166

15. Nucci, C. A., F. Rachidi, M. V. Ianoz, and C. Mazzetti, "Lightning-induced voltages on overhead lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 1, 75-86, 1993.
doi:10.1109/15.249398

16. Barker, P. P., T. A. Short, A. R. Eybert-Berard, and J. P. Berlandis, "Induced voltage measurements on an experimental distribution line during nearby rocket triggered lightnimg flashes," International Transactions on Power Delivery, Vol. 1, No. 2, 980-995, 1996.
doi:10.1109/61.489360

17. Schoene, J., M. A. Uman, V. A. Rakov, J. Jerauld, B. D. Hanley, K. J. Rambo, J. Howard, and B. DeCarlo, "Experimental study of lightning-induced currents in a buried loop conductor and a grounded vertical conductor," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 1, February 2008.
doi:10.1109/TEMC.2007.911927

18. Rubinstein, M., M. Uman, P. J. Medelius, and E. M. Thomson, "Measurements of the voltage induced on an overhead power line 20m from triggered lightning," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, May 1994.

19. Ren, H.-M., B.-H. Zhou, V. A. Rakov, L.-H. Shi, C. Gao, and J.-H. Yang, "Analysis of lightning-induced voltages on overhead lines using a 2-D FDTD method and agrawal coupling model," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 3, August 2008.
doi:10.1109/TEMC.2008.926910

20. Baba, Y. and V. A. Rakov, "Voltages induced on an overhead wire by lightning strikes to a nearby tall grounded object," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 212-224, Feb. 2006.
doi:10.1109/TEMC.2006.870807

21. Silveira, F. H. and S. Visacro, "The influence of attachment height on lightning-induced voltages," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 3, August 2008.
doi:10.1109/TEMC.2008.926885

22. Gomes, C., "On the nature of lightning flashes: With special attention to the initiation, modeling, and remote sensing of return strokes,", Ph.D. Thesis, University of Colombo, 1999.

23. Fisher, R. J. and G. H. Schnetzer, "Triggered lightning test program: Environments within 20 meters of the lightning channel and small area temporary lightning protection concepts,", Sandia National Laboratories Report SAND93-0311, Albuquerque, NM, 1994.

24. Gopakumar, G., H. Yan, B. A. Mork, and K. K. Mustaphi, "Shunt capacitor bank switching transients: A tutorial and case study," Minnesota Power Systems Conference, No. 2-4, 1999.

25. Coury, D. V., C. J. dos Santos, M. Oleskovicz, and M. C. Tavares, "Transient analysis concerning capacitor bank switching in a distribution system," Electric Power Systems Research, Vol. 65, 13-21, 2002.

26. Karzas, W. J. and R. Latter, "Electromagnetic radiation from a nuclear explosion in space," Phys. Rev., Vol. 126, 1919-1926, 1962.
doi:10.1103/PhysRev.126.1919

27. Karzas, W. J. and R. Latter, "The electromagnetic signal due to the interaction of nuclear explosions with the earth's magnetic field," Journal of Geophysical Research, Vol. 67, 4635, 1962.
doi:10.1029/JZ067i012p04635

28. Karzas, W. J. and R. Latter, "Detection of electromagnetic radiation from nuclear explosions in space," Phys. Rev., Vol. 137, 1369, 1965.
doi:10.1103/PhysRev.137.B1369

29. Longmire, C. L., "On the electromagnetic pulse produced by nuclear explosions," IEEE Transactions on Antennas and Propagation, Vol. 26, 3-13, 1978.
doi:10.1109/TAP.1978.1141796

30. Lemer, E. J., "Electromagnetic pulses: Potential crippler," IEEE Spectrum, Vol. 18, No. 5, 41-46, 1981.

31. El-Khamy, S. E. and A. F. El-Gendy, "Penetration of the nuclear electromagnetic pulse (EMP) in lossy dielectric media," Proceedings of the Thirteenth National Radio Science Conference, 1-B13, Cairo, Egypt, A.F., 1996.

32. Riddle, T. C., "Nuclear high altitude electromagnetic pulse --- Implications for homeland security and homeland defence," MSS Dissertation, U.S. Army War College, Pennsylvania, 2004.

33. Vance, E. F. and M. A. Uman, "Differences between lightning and nuclear electromagnetic pulse interactions," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 1, February 1988.
doi:10.1109/15.19889

34. Uman, M. A., M. J. Master, and E. P. Krider, "A comparison of lightning electromagnetic fields with the nuclear electromagnetic pulsein the frequency range 104-107 Hz," IEEE Transactions on Electromagnetic Compatibility, Vol. 24, 410-416, November 1982.

35. Lerner, E. J., "Electromagnetic pulses: Potential crippler," IEEE Spectrum, Vol. 18, 41-46, May 1981.

36. Corn, P. B. and J. C. Corbin, "Letter to the editor," IEEE Spectrum, Vol. 18, 20, October 1981.

37. Rustan, P. L., "Description of an aircraft lightning and simulated nuclear electromagnetic pulse (NEMP) threat based on experimental data," IEEE Transactions on Electromagnetic Compatibility, Vol. 29, No. 1, February 1987.
doi:10.1109/TEMC.1987.304332

38. Lee, K. S. H., Ed., EMP Interaction: Principles, Techniques, and Reference Data, Hemisphere, Washington, DC, 1986.

39. Parfenov, V. Y., L. N. Zdoukhov, W. A. Radasky, and M. Ianoz, "Conducted IEMI threats for commercial buildings," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 404-411, August 2004.
doi:10.1109/TEMC.2004.831883

40. Radasky, W., C. E. Baum, and M. W. Wik, "Introduction to the special issue on high-power electromagnetic (HPEM) and intentional electromagnetic interference," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 314-321, August 2004.
doi:10.1109/TEMC.2004.831899

41. Bäckström, M. G. and K. G. Lövstrand, "Susceptibility of electronic systems to high-power microwaves: Summary of test experience," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831899

42. Weber, T., D. Nitsch, and J. L. ter Haseborg, "UWB coupling to modern systems and investigation of suitable protection measures," Proc. AMEREM-2002, Annapolis, MD, 2002.

43. Taylor, C. D. and D. V. Giri, High-Power Microwave Systems and Effects, Taylor & Francis, New York, 1994.

44. Giri, D. V. and F. M. Tesche, "Classification of intentional electromagnetic environments (IEME)," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831819

45. Mansson, D., T. Nilsson, R. Thottappillil, and M. Backström, "Propagation of UWB transients in low-voltage installation power cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 3, 2007.
doi:10.1109/TEMC.2007.902186

46. Weber, T., R. Krzikalla, and J. Luiken ter Haseborg, "Linear and nonlinear filters suppressing UWB pulses," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831899

47. Prather, W. D., C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, "Survey of worldwide high-power wideband capabilities," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 2004.
doi:10.1109/TEMC.2004.831826

48. Camp, M., H. Gerth, H. Garbe, and H. Haase, "Predicting the breakdown behavior of microcontrollers under EMP/UWB impact using a statistical analysis," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831816

49. Wik, M. W. and W. A. Radasky, "Development of high-power electromagnetic (HPEM) standards," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831895

50. IEC Standard 61000-2-13 Ed. 1, "Environment --- High-power electromagnetic (HPEM) environments --- Radiated and conducted,", 2005.

51. IEC 62305-1, "Protection against lightning --- Part 1: General principles,", 2006.

52. Miyakc, K., T. Suzuki, and K. Shinjou, "Characteristics of winter lightning current on Japan sea coast," IEEE Transactions on Power Delivery, Vol. 7, No. 3, July 1992.

53. Sonnadara, U., V. Cooray, and T. Götschl, "Characteristics of cloud-to-ground lightning flashes over Sweden," Phys. Scr., Vol. 74, 541-548, 2006.
doi:10.1088/0031-8949/74/5/010

54. IEEE C62.41-1991, "IEEE recommended practice for surge voltages in low-voltage AC power circuits,", 1999.

55. IEC 62305-4, "Protection against lightning --- Part 4: Electrical and electronic systems within structures,", 2006.

56. Rakov, V. A., M. A. Uman, and R. Thottappillil, "Review of lightning properties from electric field and TV observations lightning properties from electric field and TV observations," Journal of Geophysical Research, Vol. 99, No. D5, 10745-10750, 1994.
doi:10.1029/93JD01205

57. Valine, W. C. and E. P Krider, "Statistics and characteristics of cloud-to-ground lightning with multiple ground contacts," Journal of Geophysical Research (Atmospheres), Vol. 107, No. D20, AAC 8-1, 2002.

58. Kawasaki, Z., K. Nomura, S. Yoshihashi, and K. Matsu-ura, "Observation of multiple stroke and multipoint discharges by means of UHF interference," Electrical Engineering in Japan, Vol. 134, No. 04, 2001.
doi:10.1002/1520-6416(200103)134:4<62::AID-EEJ8>3.0.CO;2-O

59. Thottappillil, R., V. A. Rakov, M. A. Uman, W. H. Beasley, M. J. Master, and D. V. Shelukhin, "Lightning subsequent-stroke electric field peak greater than the first stroke peak and multiple ground terminations," Journal of Geophysical Research, Vol. 97, 7503-7509, 1992.
doi:10.1029/92JD00557

60. Füllekrug, M., S. A. Cummer, B. Rison, W. A. Lyons, D. R. Moudry, and E. R. Williams, "Ultra-long lightning continuing current," American Geophysical Union, Fall Meeting, abstract #AE31A-0068, 2001.

61. Cummer, S. A. and U. S. Inan, "Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics," Geophysical Research Letters, Vol. 24, No. 14, 1731-1734, July 15, 1997.
doi:10.1029/97GL51791

62. Bejleri, M., V. A. Rakov, M. A. Uman, K. J. Rambo, C. T. Mata, and M. I. Fernandez, "Triggered lightning testing of an airport runway lighting system," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 1, 96-101, February 2004.
doi:10.1109/TEMC.2004.823617

63. Rakov, V. A., M. A. Uman, M. I. Fernandez, C. T. Mata, K. J. Rambo, M. V. Stapleton, and R. R. Sutil, "Direct lightning strikes to the lightning protective system of a residential building: Triggered-lightning experiments," IEEE Trans. Power Del., Vol. 17, No. 2, 575-586, April 2002.
doi:10.1109/61.997942


© Copyright 2014 EMW Publishing. All Rights Reserved