PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 110 > pp. 1-21

ON THE CALIBRATION OF A MULTISTATIC SCATTERING MATRIX MEASURED BY A FIXED CIRCULAR ARRAY OF ANTENNAS

By A. Litman, J.-M. Geffrin, and H. Tortel

Full Article PDF (652 KB)

Abstract:
The calibration of the multistatic scattering matrix plays an important part in the construction of a quantitative microwave imaging system. For scattering measurement applications, the calibration must be performed on the amplitude and on the phase of the fields of interest. When the antennas are not completely identical, as for example with a multiplexed antennas array, a specific calibration procedure must be constructed. In the present work, we explain how a complex calibration matrix can be defined which takes advantage of the geometrical organization of the antennas. Indeed, for arrays of antennas positioned on a circle, the inherent symmetries of the configuration can be fully exploited by means of an adequate reorganization of the multistatic scattering matrix. In addition, the reorganization permits to detect antenna pairs which are not properly functioning and to estimate the signal-to-noise ratio. Experimental results obtained within a cylindrical cavity enclosed by a metallic casing are provided to assess the performance of the proposed calibration procedure.This calibration protocol, which is described here in detail, has already been applied to provide quantitative images of dielectric targets [1, 2].

Citation:
A. Litman, J.-M. Geffrin, and H. Tortel, "On the Calibration of a Multistatic Scattering Matrix Measured by a Fixed Circular Array of Antennas," Progress In Electromagnetics Research, Vol. 110, 1-21, 2010.
doi:10.2528/PIER10090302
http://www.jpier.org/PIER/pier.php?paper=10090302

References:
1. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Imposing Zernike representation for two-dimensional targets imaging," Inverse Problems, Vol. 25, No. 3, 035012, 2009.
doi:10.1088/0266-5611/25/3/035012

2. Litman, A., R. Lencrerot, and J.-M. Geffrin, "Combining spatial support information and shape-based method for tomographic imaging inside a microwave cylindrical scanner," Inverse Problems Sci. Eng., Vol. 18, No. 1, 19-34, 2010.
doi:10.1080/17415970903233580

3. McGahan, R. and R. Kleinman, "Third annual special session on image reconstruction using real data," IEEE Antennas Propagat. Mag., Vol. 41, No. 1, 34-36, 1999.
doi:10.1109/MAP.1999.755022

4. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental setup and measurement precision," Inverse Problems, Vol. 21, No. 6, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09

5. Solimene, R., A. Brancaccio, J. Romano, and R. Pierri, "Localizing thin metallic cylinders by a 2.5D linear distributional approach: Experimental results," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2630-2637, 2008.
doi:10.1109/TAP.2008.927506

6. Yu, C., M. Yuan, J. Stand, E. Bressiour, R. George, G. Ybarra, W. Joines, and Q. Liu, "Active microwave imaging II: 3D systeme prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory and Tech., Vol. 56, No. 4, 991-1000, 2008.
doi:10.1109/TMTT.2008.919661

7. Duchêne, B., A. Joisel, and M. Lambert, "Nonlinear inversions of immersed objects from laboratory-controlled data," Inverse Problems, Vol. 20, No. 6, S81-S98, 2004.
doi:10.1088/0266-5611/20/6/S06

8. Eyraud, C., J.-M. Geffrin, P. Lewyllie, A. Franchois, and A. Dubois, "Target localization and measured scattered field preprocessing using spectral bandwidth minimization for shallowly buried target problems," Microw. Opt. Tech. Lett., Vol. 52, No. 1, 147-151, 2010.
doi:10.1002/mop.24855

9. Yu, C., M. Yuan, J. Stand, R. George, G. Ybarra, W. Joines, and Q. Liu, "Microwave imaging in a layered media: 3D image reconstruction from experimental data," IEEE Trans. Antennas Propagat., Vol. 58, No. 2, 440-448, 2010.
doi:10.1109/TAP.2009.2037770

10. Broquetas, A., J. Romeu, J. Rius, A. Elias-Fuste, A. Cardama, and L. Jofre, "Cylindrical geometry: A further step in active microwave tomography," IEEE Trans. Microwave Theory and Tech., Vol. 39, No. 5, 836-844, 1991.
doi:10.1109/22.79111

11. Meaney, P., M. Fanning, D. Li, S. Poplack, and K. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory and Tech., Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861

12. Geffrin, J.-M., "Imagerie microonde: Etude d'un scanner a 434MHz pour applications biomedicales,", Ph.D. Thesis, University of Paris XI, Orsay, France, 1995.

13. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Measurement strategies for a confined microwave circular scanner," Inverse Problems Sci. Eng., Vol. 17, No. 6, 787-802, 2009.
doi:10.1080/17415970802577012

14. Mojabi, P. and J. LoVetri, "Eigenfunction contrast source inversion for circular metallic enclosures," Inverse Problems, Vol. 26, No. 2, 025010, 2010.
doi:10.1088/0266-5611/26/2/025010

15. Padhi, S., A. Fhager, M. Persson, and J. Howard, "Measured antenna response of a proposed microwave tomography system using an efficient 3-D FFT model," IEEE Antennas and Wireless Propag. Lett., Vol. 7, 689-692, 2008.
doi:10.1109/LAWP.2008.2009888

16. Azaro, R., S. Caorsi, and M. Pastorino, "A 3-GHz microwave imaging system based on a modulated scattering technique and a modified Born approximation," Int. J. Imaging Systems Tech., Vol. 9, 395-403, 1998.
doi:10.1002/(SICI)1098-1098(1998)9:5<395::AID-IMA10>3.0.CO;2-U

17. Eyraud, C., J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, "Validation of a 3D bistatic microwave scattering measurement setup," Radio Sci., Vol. 43, No. 4, RS4018, 2008.
doi:10.1029/2008RS003836

18. Geffrin, J.-M., C. Eyraud, A. Litman, and P. Sabouroux, "Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets," Radio Sci., Vol. 44, RS2007, 2009.
doi:10.1029/2008RS003837

19. Geffrin, J.-M. and P. Sabouroux, "Continuing with the fresnel database: Experimental setup and improvements in 3D scattering measurements," Inverse Problems, Vol. 25, No. 2, 024001, 2009.
doi:10.1088/0266-5611/25/2/024001

20. Kahny, D., K. Schmitt, and W. Wiesbeck, "Calibration of bistatic polarimetric radar systems," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 5, 847-852, 1992.
doi:10.1109/36.175318

21. Whitt, M., F. Ulaby, P. Polatin, and V. Liepa, "A general polarimetric radar calibration technique," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 62-67, 1991.
doi:10.1109/8.64436

22. Bradley, J., P. Collins, J. Fortuny-Guash, M. Hastriter, G. Nesti, A. Terzuoli, and K. Wilson, "An investigation of bistatic calibration techniques," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 10, 2185-2191, 2005.
doi:10.1109/TGRS.2005.855130

23. Eyraud, C., J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, "Drift correction for scattering measurements," Appl. Phys. Lett., Vol. 89, No. 24, 244104, 2006.
doi:10.1063/1.2404978

24. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomed. Eng., Vol. 57, 894-904, 2010.
doi:10.1109/TBME.2009.2036372

25. Crocco, L. and A. Litman, "On embedded microwave imaging systems: Retrievable information and design guidelines," Inverse Problems, Vol. 25, No. 6, 065001, 2009.
doi:10.1088/0266-5611/25/6/065001

26. Paulides, M., J. Bakker, N. Chavannes, and G. van Rhoon, "A patch antenna design for application in a phased-array head and neck hyperthermia applicator," IEEE Trans. Biomed. Eng., Vol. 54, No. 11, 2057-2063, 2007.
doi:10.1109/TBME.2007.895111

27. Meaney, P., S. Pendergrass, M. Fanning, D. Li, and K. Paulsen, "Importance of using a reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 333-355, 2003.
doi:10.1163/156939303322235851

28. Franchois, A., "Contribution à la tomographie microonde: Algorithmes de reconstruction quantitative et vérifications experimentales,", Ph.D. Thesis, University of Paris XI, Orsay, France, 1993.

29. Franchois, A. and A. G. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Sci., Vol. 38, No. 2, 8011, 2003.
doi:10.1029/2001RS002590

30. Van den Berg, P. M. and J. T. Fokkema, "Removal of undesired wavefields related to the casing of a microwave scanner," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 1, 187-192, 2003.
doi:10.1109/TMTT.2002.806900

31. Lencrerot, R., "Outils de modélisation et d'imagerie pour un scanner micro-onde: Application au contrôle de la teneur en eau d'une colonne de sol,", Ph.D. Thesis, Univ. P. Cezanne, Marseille, France, 2008.

32. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio Sci., Vol. 32, No. 6, 2123-2138, 1997.
doi:10.1029/97RS01826

33. Fang, Q., P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen, "Microwave imaging reconstruction from 3D fields coupled to 2D parameter estimation," IEEE Trans. Medical Imaging, Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152

34. Eyraud, C., A. Litman, A. Hérique, and W. Kofman, "Microwave imaging from experimental data within a Bayesian framework with realistic random noise," Inverse Problems, Vol. 25, No. 2, 024005, 2009.
doi:10.1088/0266-5611/25/2/024005


© Copyright 2014 EMW Publishing. All Rights Reserved