PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 110 > pp. 267-295

PROPAGATION OF ELECTROMAGNETIC WAVES IN MATERIAL MEDIA WITH MAGNETIC MONOPOLES

By J. Costa-Quintana and F. Lopez-Aguilar

Full Article PDF (227 KB)

Abstract:
The objective of this paper is to establish the properties of the electromagnetic wave propagation in a diversity of situations in material media with magnetic monopoles and even in the situations of entities simultaneously containing electric and magnetic charges. This analysis requires the knowledge and solutions of the ``Maxwell" equations in material media compatible with the existence of magnetic monopoles and the extended concepts of linear responses (conductivity, split-charge susceptibility, kinetic susceptibility, permittivity and magnetic permeability) in the case of presence of electric and magnetic charges. This analysis can facilitate insights and suggestions for electrical and optical experiments according a better knowledge of the materials whose behaviour can be analyzed under the consideration of the existence of entities with equivalent properties of the magnetic monopoles.

Citation:
J. Costa-Quintana and F. Lopez-Aguilar, "Propagation of electromagnetic waves in material media with magnetic monopoles," Progress In Electromagnetics Research, Vol. 110, 267-295, 2010.
doi:10.2528/PIER10091302
http://www.jpier.org/pier/pier.php?paper=10091302

References:
1. Umul, Y. Z., "Improved equivalent source theory," J. Opt. Soc. Am. A, Vol. 2, 1798-1804, 2009.
doi:10.1364/JOSAA.26.001798

2. Harrington, R. F., Time-harmonic Electromagnetic Fields, IEEE-Wiley, 2001.
doi:10.1109/9780470546710

3. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

4. Qi, X.-L., R. Li, J. Zang, and S.-C. Zhang, "Inducing a magnetic monopole with topological surface states," Science, Vol. 323, 1184-1187, 2009.
doi:10.1126/science.1167747

5. Curie, M. P., "Sur la possibilité d'existence de la conductibilité magnétique et du magnétisme libre," Séances de la Société Fran»caise de Physique, 76-77, 1894.

6. Dirac, P. A. M., "Quantized singularities in the electromagnetic field," Proc. Roy. Soc., Vol. A133, No. 60, 1931.

7. Dirac, P. A. M., "The theory of magnetic poles," Phys. Rev., Vol. 74, 817-830, 1948.
doi:10.1103/PhysRev.74.817

8. Castelnovo, C., R. Moessner, and S. L. Sondhi, "Magnetic monopoles in spin ice," Nature, Vol. 451, 42-45, 2008.
doi:10.1038/nature06433

9. Cabrera, B., "First results from a superconductive detector for moving magnetic monopoles," Phys. Rev. Lett., Vol. 48, 1378-1381, 1982.
doi:10.1103/PhysRevLett.48.1378

10. Sondhi, S., "Wien route to monopoles," Nature, Vol. 461, 888-889, 2009.
doi:10.1038/461888a

11. Bramwell, S. T., S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and T. Fennell, "Measurement of the charge and current of magnetic monopoles in spin ice," Nature, Vol. 461, 956-960, 2009.
doi:10.1038/nature08500

12. Fennell, T., P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothryod, R. J. Aldus, D. F. McMorrow, and S. T. Bramwell, "Magnetic Coulomb phase in the spin ice Ho2Ti2O7," Science, Vol. 326, 415-417, 2009.
doi:10.1126/science.1177582

13. Gingrass, M. J., "Observing monopoles in a magnetic analog of ice," Science, Vol. 326, 375-376, 2009.
doi:10.1126/science.1181510

14. Jaubert, L. D. C. and P. C. W. Holsworth, "Signature of magnetic monopole and Dirac string dynamics in spin ice," Nature Physics, Vol. 5, 258-261, 2009.
doi:10.1038/nphys1227

15. Morris, D. J. P., D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, "Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7," Science, Vol. 326, 411-414, 2009.
doi:10.1126/science.1178868

16. Ladak, S., D. E. Read, G. K. Perkins, L. F. Cohen, and W. R. Branford, "Direct observation of magnetic monopole defects in an artificial spin-ice system," Nature Physics, Vol. 6, 359-363, 2010.
doi:10.1038/nphys1628

17. Onsager, L., "Deviations from Ohm's law in weak electrolytes," J. Chem. Phys., Vol. 2, 599-615, 1934.
doi:10.1063/1.1749541

18. Bandyopadhyay, S. and M. Cahay, Introduction to Spintronics, CRC Press, 2008.

19. Jackson, J. D., Classical Electrodynamics, 3 Ed., John Wiley & Sons, Inc., New York, 1999.

20. Hooft, G., "Magnetic monopoles in unified gauge theories," Nuclear Physics, Vol. B79, 276-284, 1974.

21. Costa-Quintana, J. and F. Lopez-Aguilar, "Extended classical electrodynamics with magnetic monopoles," Far East Journal of Mechanical Engineering and Physics, Vol. 1, 19-56, 2010.

22. Nowakowski, M. and N. G. Kelkar, "Faraday's law in the presence of magnetic monopoles," Europhys. Lett., Vol. 71, 346-351, 2005.
doi:10.1209/epl/i2004-10545-2

23. Heras, J. A., "Jefimenko's formulas with magnetic monopoles and the Lienard-Wiechert fields of a dual-charged particle," Am. J. Phys., Vol. 62, 525-531, 1994.
doi:10.1119/1.17512

24. Milton, K. A., "Theoretical and experimental status of magnetic monopoles," Rep. Prog. Phys., Vol. 69, 1637-1711, 2006.
doi:10.1088/0034-4885/69/6/R02

25. Umul, Y. Z., "Electric charges that behave as magnetic monopoles," Progress In Electromagnetic Research Letters, Vol. 18, 19-28, 2010.
doi:10.2528/PIERL10072607

26. Shnir, Y. M., Magnetic Monopoles, Springer-Verlag, Berlin, 2005.


© Copyright 2014 EMW Publishing. All Rights Reserved