PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 112 > pp. 109-124

RETRIEVAL APPROACH FOR DETERMINATION OF FORWARD AND BACKWARD WAVE IMPEDANCES OF BIANISOTROPIC METAMATERIALS

By U. C. Hasar and J. J. Barroso

Full Article PDF (410 KB)

Abstract:
A simple approach is proposed for retrieving the forward and backward wave impedances of lossless and lossy bianisotropic metamaterials. Compared with other methods in the literature, its main advantage is that forward and backward wave impedances can be uniquely and noniteratively extracted. It has been validated for both lossless and lossy bianisotropic metamaterials by performing a numerical analysis. The proposed approach can be applied for checking whether the metamaterial structure shows the bianisotropic property by monitoring forward and backward wave impedances, since the forward and backward wave impedances of a metamaterial structure depend on different polarizations of the incident wave.

Citation:
U. C. Hasar and J. J. Barroso, "Retrieval Approach for Determination of Forward and Backward Wave Impedances of Bianisotropic Metamaterials," Progress In Electromagnetics Research, Vol. 112, 109-124, 2011.
doi:10.2528/PIER10112303
http://www.jpier.org/PIER/pier.php?paper=10112303

References:
1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, West Sussex, England, 2004.
doi:10.1002/0470020466

2. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

3. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

4. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336

5. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032

6. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2267, Sep. 2009.
doi:10.1109/TMTT.2009.2027160

7. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

8. Le Floch, J. M., F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, "Thin film materials characterization using TE modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 549-559, 2009.
doi:10.1163/156939309787612293

9. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip transmission method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009.
doi:10.1163/156939309789108598

10. Challa measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting, R. K., et al., "Permittivity," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.

11. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402

12. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

13. Hasar, U. C., "Unique retrieval of complex permittivity of low-loss dielectric materials from transmission-only measurements," IEEE Geosi. Remote Sens. Lett., Vol. 8, No. 3, 561-563, 2011.

14. Hasar, U. C., "Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 2, 451-457, 2010.
doi:10.1109/TMTT.2009.2038444

15. Hasar, U. C., "A generalized formulation for permittivity extraction of low-to-high-loss materials from transmission measure ment," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 411-418, 2010.
doi:10.1109/TMTT.2009.2038443

16. Hasar, U. C., "A new microwave method for electrical characterization of low-loss materials," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 801-803, 2009.
doi:10.1109/LMWC.2009.2033512

17. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 788-790, 2008.
doi:10.1109/LMWC.2008.2007699

18. Kharkovsky, S. N., M. F. Akay, U. C. Hasar, and C. D. Atis, "Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens," IEEE Trans. Instrum. Meas., Vol. 51, No. 6, 1210-1218, 2002.
doi:10.1109/TIM.2002.808081

19. Rodriguez-Vidal, M. and E. Martin, "Contribution to numerical methods for calculation of complex dielectric permittivities," Electron. Lett., Vol. 6, No. 16, 510, 1970.
doi:10.1049/el:19700354

20. Ness, J., "Broad-band permittivity measurements using the semi-automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985.
doi:10.1109/TMTT.1985.1133198

21. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
doi:10.1109/19.744179

22. Xia, S., Z. Xu, and X. Wei, "Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency," Rev. Sci. Instrum., Vol. 80, No. 11, 114703-1-4, 2009.
doi:10.1063/1.3237244

23. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805

24. Buyukozturk, O., T.-Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004

25. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted flelds by enforcing causality," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2224-2230, Oct. 2007.
doi:10.1109/TMTT.2007.906473

26. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A freespace method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 38, No. 3, 783-793, Jun. 1989.
doi:10.1109/19.32194

27. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2129-2135, Sep. 2008.
doi:10.1109/TMTT.2008.2002229

28. Hasar , U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702

29. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 471-477, Feb. 2009.
doi:10.1109/TMTT.2008.2011242

30. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09041405

31. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1563-1574, Aug. 2010.
doi:10.1163/156939310792149759

32. Hasar, U. C. and E. A. Oral, "A metric function for fast and accurate permittivity determination of low-to-high-loss materials from reflection measurements," Progress In Electromagnetics Research, Vol. 107, 397-412, 2010.
doi:10.2528/PIER10071308

33. Hasar, U. C., "Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies," Progress In Electromagnetics Research, Vol. 109, 107-121, 2010.
doi:10.2528/PIER10083006

34. Hasar, U. C., "A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials," IEEE Microw. Wireless Compon. Lett., Vol. 20, Dec. 2010.

35. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, Jun. 2009.
doi:10.1109/TMTT.2009.2020779

36. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 419-421, Jun. 2009.
doi:10.1109/LMWC.2009.2020045

37. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606

38. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKHI,, Vol. 10, No. 4, 509-514, Jan.--eb. 1968.
doi:10.1070/PU1968v010n04ABEH003699

39. Li, Z., K. Aydin, and E. Ozbay, "Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients," Phys. Rev. E, Vol. 79-7, 2009.

40. Barroso, J. J., P. J. Castro, and J. P. Leite Neto, "Experiments on wave propagation at 6.0 GHz in a left-handed waveguide," Microw. Opt. Technol. Lett., Vol. 52, No. 10, 2175-2178, Oct. 2010.
doi:10.1002/mop.25435

41. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773

42. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, No. 22, 4785-4809.
doi:10.1088/0953-8984/10/22/007

43. Pendry, J. B., A. J. Hold, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

44. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-1-5, 2002.

45. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, No. 16, 10696-10705, Oct. 2000.
doi:10.1103/PhysRevB.62.10696

46. Smith, D. R., D. C. Vier, T. Koschhy, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617-1-11, 2005.

47. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B, Vol. 65, No. 14, 144440-1-6, Apr. 2002.
doi:10.1103/PhysRevB.65.144440

48. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, Apr. 2004.
doi:10.1063/1.1695439

49. Markos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Opt. Express, Vol. 11, No. 7, 649-661, Apr. 2003.
doi:10.1364/OE.11.000649

50. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, Jul. 2003.
doi:10.1109/TAP.2003.813622

51. Chen, X., T. M. Gregorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608-1-7, 2004.

52. Grzegorczyk, T. M., X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 83-113, 2005.
doi:10.2528/PIER04040901

53. Chen, X., T. M. Grzegorczyk, and J. A. Kong, "Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium," Progress In Electromagnetics Research, Vol. 60, 1-18, 2006.
doi:10.2528/PIER05120601

54. Chen, X., B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E, Vol. 71, 046610-1-9, 2005.

55. Constantine, A. B., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.


© Copyright 2014 EMW Publishing. All Rights Reserved