Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 112 > pp. 215-224


By J. Carbonell, E. Lheurette, and D. Lippens

Full Article PDF (616 KB)

We report on free space transmission experiments carried out on stacked split ring resonator (SRRs) arrays operating at microwave frequencies. We start from the case of a single frequency selective surface which exhibits a rejection at the SRR resonance frequency. By stacking SRR arrays in the propagation direction, we then show experimentally the possibility to induce a transmission band just below this resonance frequency. Full wave analysis shows the role played by the longitudinal and transverse coupling effects in the electromagnetic properties of such bulk metamaterials, with the appearance of a transmission band resulting from an artificial magnetic activity.

J. Carbonell, E. Lheurette, and D. Lippens, " from rejection to transmission with stacked arrays of split ring resonators ," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

1., Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.

2. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 3966, Oct. 2000.

3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Oct. 2006.

4. Kozyrev, A. B., C. Qin, I. V. Shadrivov, Y. S. Kivshar, I. L. Chuang, and D. W. van der Weide, "Wave scattering and splitting by magnetic metamaterials," Optics Express, Vol. 15, 11714-11722, Aug. 2007.

5. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," Journal of Applied Physics, Vol. 92, 6252-6261, Nov. 2002.

6. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, Oxford, 2009.

7. Carbonell, J., V. E. Boria, and D. Lippens, "Nonlinear effects in split ring resonators loaded with heterostructure barrier varactors," Microwave Optical Technology Letters,, Vol. 50, 474-479, Feb. 2008.

8. Aznabet, M., M. Navarro-Cía, S. A. Kuznetsov, A. V. Gelfand, N. I. Fedorinina, Y. G. Goncharov, M. Beruete, O. El Mrabet, and M. Sorolla, "Polypropylene-substrate-based SRR- and CSRR metasurfaces for submillimeter waves," Optics Express, Vol. 16, No. 22, 18312-18319, Oct. 2008.

9. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419-422, Oct. 2003.

10. Kanté , B., S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, "Controlling plasmon hybridization for negative refraction metamaterials," Physical Review B, Vol. 79, 075121, Feb. 2009.

11. Guven, K., M. D. Caliskan, and E. Ozbay, "Experimental observation of left-handed transmission in a bilayer metamaterial under normal-to-plane propagation," Optics Express, Vol. 14, No. 14, 8685-8693, Sep. 2006.

12. Wang, S., F. Garet, K. Blary, C. Croënne, E. Lheurette, J. L. Coutaz, and D. Lippens, "Composite left/right-handed stacked hole arrays at submillimeter wavelengths," Journal of Applied Physics, Vol. 107, 074510, 2010.

13. Croenne, C., F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, "Left handed dispersion of a stack of subwavelength hole metal arrays at terahertz frequencies," Applied Physics Letters, Vol. 94, Apr. 2009.

14. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays," Optics Express, Vol. 14, 5445-5455, Jun. 2006.

15., Ortuño, R., C. García-Meca, F. J. Rodriguez-Fortuño, J. Martí, and A. Martínez, "Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays," Physical Review B, Vol. 79, 075425, Feb. 2009.

16. Alú, A. and N. Engheta, "Evanescent growth and tunneling through stacks of frequency-selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 417-420, 2005.

17. Shamonina, E., "Slow waves in magnetic metamaterials: History, fundamentals and applications," Physica Status Solidi, Vol. 245, No. 8, 1471-1482, Jun. 2008.

18. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, 31-37, Jan. 2008.

© Copyright 2014 EMW Publishing. All Rights Reserved