1. Asanov, G. S., Finsler Geometry, Relativity and Gauge Theories, Reidel, Dordrecht, 1985.
2. Balan, V. and P. C. Stavrinos, "Finslerian (α,β)-metrics in weak gravitational models," Finsler and Lagrange Geometries, M. Anastasiei and P. L. Antonelli, Eds., 259-268, Kluwer Acad Publishers, 2003. Google Scholar
3. Brinzei (Voicu), N. and S. Siparov, Equations of Electromagnetism in Some Special Anisotropic Spaces, Dec. 2008.
4. Bogoslovsky, G. Y., "A viable model of locally anisotropic space-time and the Finslerian generalization of the relativity theory," Fortschr. Phys., Vol. 42, No. 2, 143-193, 1994.
doi:10.1002/prop.2190420203 Google Scholar
5. Bogoslovsky, G. Y. and H. F. Goenner, "Concerning the generalized Lorentz symmetry and the generalization of the Dirac equation ," Phys. Lett. A, Vol. 323, 40-47, 2004.
doi:10.1016/j.physleta.2004.01.040 Google Scholar
6. Bao, D., S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, (Graduate Texts in Mathematics, 200) , Springer Verlag, 2000.
7. Dahl, M., "Electromagnetic Gaussian beams and Riemannian geometry ," Progress In Electromagnetics Research, Vol. 60, 265-291, 2006.
doi:10.2528/PIER05122802 Google Scholar
8. Ivancevic, V. G. and T. T. Ivancevic, Applied Differential Geometry. A Modern Introduction, WSP, 2007.
9. Kachalov, A. P., "Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates," Journal of Math. Sciences, Vol. 142, No. 6, 2546-2558, 2007.
doi:10.1007/s10958-007-0142-1 Google Scholar
10. Miron, R. and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, FTPH, No. 59, Kluwer Acad. Publ., 1994.
11. Landau, L. D. and E. M. Lifschiz, Field Theory, 8th Ed., Fizmatlit, Moscow, 2006.
12. Miron, R., R. Rosca, M. Anastasiei, and K. Buchner, "New aspects in Lagrangian relativity," Found. of Phys. Lett., Vol. 2, No. 5, 141-171, 1992.
doi:10.1007/BF00682812 Google Scholar
13. Miron, R. and M. Radivoiovici-Tatoiu, "A Lagrangian theory of electromagnetism," Seminarul de Mecanica, 1-55, Timisoara, 1988. Google Scholar
14. Miron, R., The Geometry of Ingarden Spaces, Vol. 54, No. 2, 131-147, Rep. on Math. Phys., 2007.
15. Rutz, S., "A Finsler generalisation of Einstein's vacuum field equations," General Relativity and Gravitation, Vol. 25, No. 11, 1139-1158, 1993.
doi:10.1007/BF00763757 Google Scholar
16. Siparov, S., "On the interpretation of the classical GRT tests and cosmological constant in anisotropic geometrodynamics ,", 2009. Google Scholar
17. Shen, Z., Lectures on Finsler Geometry, World Scientific, 2001.
18. Udriste, C. and V. Balan, Differential Operators and Convexity on Vector Bundles, Endowed with (h; v)-metrics, Section I, Vol. 43, No. 1, 37{50, An. St. Univ. ``AL.I. Cuza", 1997.
19. Vacaru, S., P. Stavrinos, E. Gaburov, and D. Gonta, Clifford and Riemann Finsler Structures in Geometric Mechanics and Gravity, Geometry Balkan Press, Bucharest, 2006.
20. Voicu, N. and S. Siparov, "A new approach to electromagnetism in anisotropic spaces," BSG Proc., Vol. 17, 250-260, 2010. Google Scholar
21. Watanabe, T. and M. Hayashi, General Relativity with Torsion, arXiv: gr -qc/0409029.
22. Li, X. and Z. Chang, "Towards a gravitation theory in Berwald-Finsler space," Chinese Phys. C, Vol. 34, 28, 2010.
doi:10.1088/1674-1137/34/11/002 Google Scholar
23. Von Brzeski, J. G. and V. von Brzeski, "Topological wave-length shifts [electromagnetic field in Lobachevskian geometry]," Progress In Electromagnetics Research, Vol. 39, 281-298, 2003.
doi:10.2528/PIER02112101 Google Scholar
24. Carcione, J. M., "Simulation of electromagnetic diffusion in anisotropic media," Progress In Electromagnetics Research B, Vol. 26, 425-450, 2010.
doi:10.2528/PIERB10100607 Google Scholar
25. Cheng, X., H. Chen, B.-I. Wu, and J. A. Kong, "Cloak for bianisotropic and moving media," Progress In Electromagnetics Research, Vol. 89, 199-212, 2009.
doi:10.2528/PIER08120803 Google Scholar
26. Gratus, J. and R. W. Tucker, "Covariant constitutive relations, Landau damping and non-stationary inhomogeneous plasmas," Progress In Electromagnetics Research M, Vol. 13, 145-156, 2010.
doi:10.2528/PIERM10051310 Google Scholar
27. Lindell, I. V., "Class of electromagnetic sq-media," Progress In Electromagnetics Research, Vol. 110, 371-382, 2010.
doi:10.2528/PIER10100601 Google Scholar
28. Lindell, I. V., "Electromagnetic wave equation in differential-form representation ," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002 Google Scholar
29. Slob, E. C. and K. Wapenaar, "Retrieving the Green's function from cross correlation in a bianisotropic medium," Progress In Electromagnetics Research, Vol. 93, 255-274, 2009.
doi:10.2528/PIER09041004 Google Scholar