PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 114 > pp. 443-455

AN EXACT SOLUTION OF THE CYLINDRICAL WAVE EQUATION FOR ELECTROMAGNETIC FIELD IN FRACTIONAL DIMENSIONAL SPACE

By M. Zubair, M. J. Mughal, and Q. A. Naqvi

Full Article PDF (483 KB)

Abstract:
This work deals with an exact solution of cylindrical wave equation for electromagnetic field in fractional dimensional space. The obtained fractional solution is a generalization of the cylindrical wave equation from integer dimensional space to a fractional dimensional space. The resulting theoretical framework can be used to study the phenomenon of electromagnetic wave propagation in any fractal media because fractal media can be described as an ordinary media in a fractional dimensional space. The classical results are recovered from fractional solution when integer dimensional space is considered.

Citation:
M. Zubair, M. J. Mughal, and Q. A. Naqvi, "An Exact Solution of the Cylindrical Wave Equation for Electromagnetic Field in Fractional Dimensional Space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011.
doi:10.2528/PIER11021508
http://www.jpier.org/PIER/pier.php?paper=11021508

References:
1. Stillinger, F. H., "Axiomatic basis for spaces with noninteger dimension," J. Math. Phys., Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395

2. He, X., "Anisotropy and isotropy: A model of fraction-dimensional space," Solid State Commun., Vol. 75, 111-114, 1990.
doi:10.1016/0038-1098(90)90352-C

3. Muslih, S. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001

4. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058

5. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Phys. Lett. A, Vol. 21, No. 20, 1587-1600, 2006.
doi:10.1142/S0217732306020974

6. Palmer, C. and P. N. Stavrinou, "Equations of motion in a noninteger-dimension space," J. Phys. A, Vol. 37, 6987-7003, 2004.
doi:10.1088/0305-4470/37/27/009

7. Mandelbrot, B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

8. Willson, K. G., "Quantum field-theory, models in less than 4 dimensions," Phys. Rev. D, Vol. 7, No. 10, 2911-2926, 1973.
doi:10.1103/PhysRevD.7.2911

9. Zeilinger, A. and K. Svozil, "Measuring the dimension of space-time," Phys. Rev. Lett., Vol. 54, No. 24, 2553-2555, 1985.
doi:10.1103/PhysRevLett.54.2553

10. Miller, K. S. and B. Ross, An Introduction to the Fractional Integrals and Derivatives-theory and Applications, Gordon and Breach, Longhorne, PA, 1993.

11. Engheta, N., "Fractional curl operator in electromagnetics," Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

12. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801

13. Engheta, N., "Use of fractional integration to propose some \Fractional" solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

14. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.

15. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space,", Vol. 114, 255-269, 2011.

16. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
doi:10.2528/PIER09060801

17. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.2528/PIER08081201

18. Naqvi, Q. A., "Fractional dual interface in chiral nihility medium," Progress In Electromagnetics Research Letters, Vol. 8, 135-142, 2009.
doi:10.2528/PIERL09032405

19. Naqvi, Q. A., "Fractional dual solutions in grounded chiral nihility slab and their effect on outside fields," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 773-784, 2009.
doi:10.1163/156939309788019958

20. Naqvi, A., S. Ahmed, and Q. A. Naqvi, "Perfect electromagnetic conductor and fractional dual interface placed in a chiral nihility medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1991-1999, 2010.


© Copyright 2014 EMW Publishing. All Rights Reserved