PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 119 > pp. 225-237

DUAL-FREQUENCY ELECTROMAGNETIC CLOAKS ENABLED BY LC-BASED METAMATERIAL CIRCUITS

By J. Shao, H. Zhang, Y. Lin, and H. Xin

Full Article PDF (339 KB)

Abstract:
A dual-frequency cloak based on lumped LC-circuits is proposed. Multiple LC-resonant tanks are employed to satisfy the specific conditions for dual-frequency operations. In this way, the designed cloak features greatly reduce scattering cross sections at the two working frequencies simultaneously. Besides, explicit design equations are derived for the developed circuit systems. Based on these formulas, the range of the realizable frequency ratio of the presented cloak (the ratio between the two operating frequencies) is discussed. To verify the theoretical predictions, full-wave electromagnetic simulations are implemented. Good consistency between the numerical results and the design theories is achieved.

Citation:
J. Shao, H. Zhang, Y. Lin, and H. Xin, "Dual-Frequency Electromagnetic Cloaks Enabled by LC-Based Metamaterial Circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507
http://www.jpier.org/PIER/pier.php?paper=11052507

References:
1. Nicorovici, N. A., G. W. Milton, R. C. Mcphedran, G. W. Milton, and R. C. Mcphedran, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Optics Express, Vol. 15, 6314-6323, May 2007.
doi:10.1364/OE.15.006314

2. Alù, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Physical Review E, Vol. 72, 016623, Jul. 2005.
doi:10.1103/PhysRevE.72.016623

3. Alù, A. and N. Engheta, "Cloaking and transparency for collections of particles with metamaterial and plasmonic covers," Optics Express, Vol. 15, 7578-7590, Jun. 2007.
doi:10.1364/OE.15.007578

4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, May 2006.
doi:10.1126/science.1125907

5. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, May 2006.
doi:10.1126/science.1126493

6. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Material electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Oct. 2006.
doi:10.1126/science.1133628

7. Chen, H. S., B. I.Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Physical Review Letters, Vol. 90, 063903, Oct. 2007.

8. Ruan, Z. C., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Physical Review Letters, Vol. 99, 113903, Sep. 2007.
doi:10.1103/PhysRevLett.99.113903

9. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Y. Kurylev, M. Lassas, and G. Uhlmann from metamaterials," Physical Review Letters, Vol. 99, 183901, Oct. 2007.
doi:10.1103/PhysRevLett.99.183901

10. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 6, 87-95, Apr. 2007.
doi:10.1016/j.photonics.2007.07.013

11. Huanyang, C. and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Applied Physics Letters, Vol. 91, 183518, Nov. 2007.

12. Kong, F., B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Applied Physics Letters, Vol. 91, 253507, Dec. 2007.
doi:10.1063/1.2824481

13. Jiang, W. X., T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, "Cylindrical-to-plane-wave conversion via embedded optical transformation ," Applied Physics Letters, Vol. 92, 261903, Jul. 2008.
doi:10.1063/1.2953447

14. Wu, Y., Y. Liu, and S. Li, "Dual-band modi¯ed Wilkinson power divider without transmission line stubs and reactive components," Progress In Electromagnetics Research, Vol. 96, 9-20, 2009.
doi:10.2528/PIER09072109

15. Heidari, A. A., M. Heyrani, and M. Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-208, 2009.
doi:10.2528/PIER09032401

16. Wu, Y., Y. Liu, and S. Li, "An unequal dual-frequency Wilkinson power divider with optional isolation structure," Progress In Electromagnetics Research, Vol. 91, 393-411, 2009.
doi:10.2528/PIER09030501

17. Wu, Y., Y. Liu, and S. Li, "A new dual-frequency Wilkinson power divider," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 483-492, 2009.
doi:10.1163/156939309787612400

18. Abdalla, M. A. and Z. Hu, "Multi-band functional tunable LH impedance transformer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 39-47, 2009.
doi:10.1163/156939309787604652

19. Zhou, S., J. Ma, and J. Deng, "A novel dual band-notched ultra-wideband antenna," ultra-wideband antenna, Applications, Vol. 23, No. 1, 57-63, 2009.

20. Wang, X. H., L. Chen, X. W. Shi, Y. F. Bai, L. Chen, and X. Q. Chen, "Planar dual-frequency power divider using umbrella-shaped resonator," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5/6, 597-606, 2010.
doi:10.1163/156939310791036377

21. Li, J. C., J. C. Nan, X. Y. Shan, and Q. F. Yan, "A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2223-2235, 2010.
doi:10.1163/156939310793699163

22. Abu, M., M. K. A. Rahim, O. Ayop, and F. Zubir, "Triple-band printed Dipole antenna with single-band AMC-HIS," Progress In Electromagnetics Research B, Vol. 20, 225-244, 2010.
doi:10.2528/PIERB10022301

23. Vegesna, S. and M. Saed, "Novel compact dual-band bandpass microstrip filter," Progress In Electromagnetics Research B, Vol. 20, 245-262, 2010.
doi:10.2528/PIERB10012210

24. Qaroot, A., N. Dib, and A. Gheethan, "Design methodology of multi-frequency un-equal split Wilkinson power divider using transmission line transformers," Progress In Electromagnetics Research B, Vol. 22, 1-21, 2010.
doi:10.2528/PIERB10042809

25. Wu, Y., Y. Liu, S. Li, C. Yu, and X. Liu, "Closed-form design method of an N-way dual-band Wilkinson hybrid power divider," Progress In Electromagnetics Research, Vol. 101, 97-114, 2010.
doi:10.2528/PIER09111906

26. Lin, Z. and Q. X. Chu, "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines ," Progress In Electromagnetics Research, Vol. 103, 271-284, 2010.
doi:10.2528/PIER10012202

27. Yang, R. Y., K. Hon, C. Y. Hung, and C. S. Ye, "Design of dual-band bandpass ¯lters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504

28. Wood, B. and J. B. Pendry, "Metamaterials at zero frequency," Journal of Physics: Condensed Matter, Vol. 19, 076208, Feb. 2007.
doi:10.1088/0953-8984/19/7/076208

29. Chen, H., Ruan, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, "Extending the bandwidth of electromagnetic cloaks," Physical Review B, Vol. 76, 241104, Dec. 2007.
doi:10.1103/PhysRevB.76.241104

30. Alù, A. and N. Engheta, "Multifrequency optical invisibility cloak with layered plasmonic shells," Physical Review Letters, Vol. 100, 113901, May 2008.
doi:10.1103/PhysRevLett.100.113901

31. Wang, H. L. and X. D. Zhang, "Achieving multifrequency transparency with cylindrical plasmonic cloak," Journal of Applied Physics, Vol. 106, 053302, 2009.
doi:10.1063/1.3212554

32. Liu, Y. W. and Y. J. Meng, "Electrically controlled multifre-quency ferroelectric cloak," Optics Express, Vol. 18, No. 12, 12646-12652, 2010.
doi:10.1364/OE.18.012646

33. Serebryannikov, A. E. and E. Ozbay, "Non-ideal multifrequency cloaking using strongly dispersive materials," Physica B: Condensed Matter, Vol. 405, No. 14, 2959-2963, 2010.
doi:10.1016/j.physb.2010.01.013

34. Li, P. N., Y. W. Liu, Y. J. Meng, and M. J. Zhu, "A multifrequency cloak with a single shell of negative index metamaterials," Chin. Phys. Lett, Vol. 28, No. 6, 064206, 2011.
doi:10.1088/0256-307X/28/6/064206

35. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

36. Grbic, A. and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," IEEE Trans. Antennas Propag., Vol. 51, 2604-2611, Oct. 2003.

37. Lin, I.-H., M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 52, 1142-1149, Apr. 2004.
doi:10.1109/TMTT.2004.825747

38. Alitalo, P., S. Maslovski, and S. Tretyakov, "Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens," Journal of Applied Physics, Vol. 99, 124910, Jun. 2006.
doi:10.1063/1.2206709

39. Iyer, A. K. and G. V. Eleftheriades, "A multilayer negative-refractive-index transmission-line (NRI-TL) metamaterial free-space lens at X-band," IEEE Trans. Antennas Propag., Vol. 55, 2746-2753, Oct. 2007.

40. Iyer, A. K. and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation ," Applied Physics Letters, Vol. 92, 261106, Jul. 2008.
doi:10.1063/1.2953709

41. Chen, A. K., P. Fischer, and F. W. Wise, "Negative refraction at optical frequencies in nonmagnetic two-component molecular media," Physical Review Letters, Vol. 95, 067402, Aug. 2005.
doi:10.1103/PhysRevLett.95.067402


© Copyright 2014 EMW Publishing. All Rights Reserved