Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 119 > pp. 191-206


By P. Cao, X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang

Full Article PDF (676 KB)

The paper discusses the reason why the image resolution can be significantly enhanced by the superlens with anti-reflection and phase control coatings (ARPC-superlens) via analyzing the surface plasmons (SPs) modes. ARPC-superlens is an asymmetric structure with finite thickness, in which we first find that there are two asymmetric SPs modes. By comparing the dispersion curve of SPs of ARPC-superlens and the SPs group velocity with their counterparts in the metric ones, we find that the Up Asymmetric Mode and Down Asymmetric Mode are excited within the ARPC-superlens with asymmetric structure. By simulating the aerial images in different SPs modes, the paper also discusses the optimal ratio between the metal slab and the ARPC coatings thickness. The results demonstrate that the subwavelength resolution of ARPC-superlens in Down Asymmetric Mode has been enhanced, when the metal/ARPC thickness ratio is 2:1.

P. Cao, X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution Enhancement for the Superlens with Anti-Reflection and Phase Control Coatings via Surface Plasmons Modes of Asymmetric Structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.

1. Pendry, J. B. and Negative refraction makes a perfect lens, "Phys. Rev. Lett.,", Vol. 85, 3966, 2000.

2. Veselago, V. G., "Properties of materials having simultaneously negative values of dielectric (ε) and magnetic (μ) susceptibilities," Sov. Phys. Solid State, Vol. 8, 2854-2856, 1967.

3. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2002.

4. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.

5. Liu, Z. W., N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett., Vol. 83, 5184, 2003.

6. Moore, C. P., M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," JOSA A, Vol. 25, No. 4, 911-918, 2008.

7. Shi, Z., V. Kochergin, and F. Wang, "193nm superlens imaging structure for 20nm lithography node," Optics Express, Vol. 17, No. 14, 11309-11314, 2009.

8. Chaturvedi, P., W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, "A smooth optical superlens," Appl. Phys. Lett., Vol. 96, 043102, 2010.

9. Chuang, C.-H. and Y.-L. Lo, "Signal analysis of apertureless scanning near-field optical microscopy with superlens," Progress In Electromagnetics Research, Vol. 109, 83-106, 2010.

10. Jin, Y., "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.

11. Raether, H., Surface Plasmons, Springer, Berlin, 1988.

12. Tremblay, G. and Y. Sheng, "Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique," Applied Optics, Vol. 49, No. 7, 1, 2010.

13. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Surface plasmon esonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1005-1014, 2010.

14. Suyama, T., Y. Okuno, and T. Matsuda, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.

15. Li, Y. and X. Zhang, "Nonlinear optical switch utilizing long-range surface plasmon polaritons," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2363-2371, 2009.

16. Xie, H., F. Kong, and K. Li, "The electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 535-548, 2009.

17. Li, X., Y. Ye, and Y. Jin, "Impedance-mismatched hyperlens with increasing layer thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.

18. Zhao, J., K. Li, F. Kong, and D. Liu-Ge, "Enhancement of blue light emission using surface plasmons coupling with quantum wells ," Progress In Electromagnetics Research, Vol. 108, 293-306, 2010.

19. Xu, T., L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, "Localizing surface plasmons with a metalcladding superlens for projecting deep-subwavelength patterns," Appl. Phys. B, Vol. 97, No. 1, 175-179, 2009.

20. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.

21. Lee, K., Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett., Vol. 94, 101113, 2009.

22. Lee, K., H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Optics Express, Vol. 16, No. 3, 1711-1718, 2008.

23. Cao, P., L. Cheng, Y. E. Li, X. Zhang, Q. Meng, and W. J. Kong, "Reflectivity and phase control research for superresolution enhancement via the thin films mismatc," Progress In Electromagnetics Research, Vol. 107, 365-378, 2010.

24. Cheng, Q. and T. J. Cui, "Guided modes in a planar anisotropic biaxial slab with partially negative permittivity and permeability ," Appl. Phy. Lett., Vol. 87, No. 17, 174102, 2005.

25. Ye, Z., "Optical transmission and reflection of perfect lenses by left handed materials," Phys. Rev. B, Vol. 67, 193106, 2003.

26. Liu, Y., D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, "Negative group velocity of surface plasmons on thin metallic films," Proc. SPIE, Vol. 6323, 63231M, 2006.

27. Fox, M., Optical Properties of Solids, Oxford Univerity Press, 2001.

28. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.

29. Chen, Z. and H. J. Simon, "Attenuated total reflectance from a layered silver grating with coupled surface waves," JOSA B, 5, 1988.

© Copyright 2014 EMW Publishing. All Rights Reserved