PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 120 > pp. 459-479

ACTIVE LEARNING METHOD FOR THE DETERMINATION OF COUPLING FACTOR AND EXTERNAL Q IN MICROSTRIP FILTER DESIGN

By P. Rezaee, M. Tayarani, and R. Knöchel

Full Article PDF (7,463 KB)

Abstract:
In the final step of any filter design process, the desired center frequency, coupling factor and external quality factor (Qext) are used to determine the physical parameters of the filter. Although in the most cases the physical dimensions of a single resonator for a given center frequency are determined using exact analytical or simple approximate equations, usually such simple equations cannot be found to easily relate the required coupling factor and Qext to the physical parameters of the filter. Analytical calculation of coupling factor and Qext versus dimensions are usually complicated due to the geometrical complexities or in some cases such as microstrip resonators due to the lack of exact solution for the field distribution. Therefore coupling factor and Qext of various kinds of resonators, especially microstrip resonators, are related to the physical parameters of the structure by the use of time consuming full wave simulations. In this paper a surprisingly fast and completely general approach based on a soft computing pattern-based processing technique, called active learning method (ALM) is proposed to overcome the time consuming process of coupling factor and Qext determination. At first the ALM technique and the steps of modeling are generally described, then as an example and in order to show the ability of the method this modeling approach is implemented to model the coupling factor and Qext surfaces of microstrip open-loop resonators versus physical parameters of the structure. Using the ALM-based extracted surfaces for coupling factor and Qext, two four pole Chebychev bandpass filters are designed and fabricated. Good agreement between the measured and simulated results validates the accuracy of the proposed approach.

Citation:
P. Rezaee, M. Tayarani, and R. Knöchel, "Active Learning Method for the Determination of Coupling Factor and External Q in Microstrip Filter Design," Progress In Electromagnetics Research, Vol. 120, 459-479, 2011.
doi:10.2528/PIER11071901
http://www.jpier.org/PIER/pier.php?paper=11071901

References:
1. Hong, J. S. and M. J. Lancaster, "Canonical microstrip filter using square open-loop resonators," IEE Electron. Lett., Vol. 31, No. 23, 2020-2022, Nov. 1995.
doi:10.1049/el:19951370

2. Mao, R. J., X. H. Tang, L. Wang, and G. H. Du, "Miniaturized hexagonal stepped-impedance resonators and their applications to filters," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 2, 440-448, Feb. 2008.
doi:10.1109/TMTT.2007.914622

3. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Compact dual-mode bandpass filters using hexagonal meander loop resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1723-1732, 2009.
doi:10.1163/156939309789566941

4. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304

5. Dai, G.-L. and M.-Y. Xia, "An investigation of quarter-wavelength square-spiral resonator and its applications to miniaturized bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1303-1313, 2010.
doi:10.1163/156939310791958699

6. Alhawari, A. R. H., A. Ismail, M. F. A. Rasid, R. S. A. R. Abdullah, B. K. Esfeh, and H. Adam, "Compact microstrip band-pass filter with sharp passband skirts using square spiral resonators and embedded-resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 675-683, 2009.
doi:10.1163/156939309788019895

7. Hong, J. S. and M. J. Lancaster, "Coupling of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, 2099-2109, Dec. 1996.
doi:10.1109/22.543968

8. Hong, J. S., M. J. Lancaster, R. B. Greed, and D. Jedamzik, "On the development of superconducting microstrip filters for mobile communications applications," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1656-1663, Sep. 1999.
doi:10.1109/22.788606

9. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904

10. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator filters," Progress In Electromagnetics Research, Vol. 92, 333-346, 2009.
doi:10.2528/PIER09041102

11. Weng, M. H., C. H. Kao, and Y. C. Chang, "A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 161-168, 2010.
doi:10.1163/156939310790735679

12. Jiang, S. M., W.-T. Li, X. H. Wang, Q. Y. Song, and X.-W. Shi, "A novel method of designing cross-coupled filters through optimization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14--15, 2011-2019, 2009.
doi:10.1163/156939309789932386

13. Zhu, Y.-Z., H. S. Song, and K. Guan, "Design of optimized selective quasi-elliptic filters," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1357-1366, 2009.
doi:10.1163/156939309789108507

14. Lee, J. and K. Sarabandi, "A synthesis method for dual-passband microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 6, 1163-1170, Jun. 2007.
doi:10.1109/TMTT.2007.897712

15. Athukorala, L., D. Budimir, and M. M. Potrebic, "Design of open-loop dual-mode microstrip filters," Progress In Electromagnetics Research Letters, Vol. 19, 179-185, 2010.

16. Lin, H.-J., X.-Q. Chen, X.-W. Shi, L. Chen, and C.-L. Li, "A dual passband filter using hybrid microstrip open loop resonators and coplanar waveguide slotline resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 141-149, 2010.
doi:10.1163/156939310790322118

17. Rebenaque, D. C., J. Pascual-García, F. Q. Pereira, J. L. Gomez-Tornero, and A. A. Melcon, "Novel implementation of transversal filters in multilayered microstrip technology," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1241-1253, 2010.
doi:10.1163/156939310791586179

18. Abu-Hudrouss, A. M. and M. J. Lancaster, "Design of multiple-band microwave filters using cascaded filter elements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2109-2118, 2009.
doi:10.1163/156939309790109225

19. Lai, X., N. Wang, B. Wu, and C.-H. Liang, "Design of dual-band filter based on OLRR and DSIR," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 209-218, 2010.
doi:10.1163/156939310790735723

20. Lin, H.-J., X.-Q. Chen, X.-W. Shi, L. Chen, and C.-L. Li, "A dual passband filter using hybrid microstrip open loop resonators and coplanar waveguide slotline resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 141-149, 2010.
doi:10.1163/156939310790322118

21. Wang, J.-P., L. Wang, Y.-X. Guo, Y. X. Wang, and D.-G. Fang, "Miniaturized dual-mode bandpass filter with controllable harmonic response for dual-band applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1525-1533, 2009.
doi:10.1163/156939309789476482

22. Lee, J. and K. Sarabandi, "Design of triple-passband microwave filters using frequency transformations," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 1, 187-193, Jun. 2008.
doi:10.1109/TMTT.2007.912206

23. Wu, H.-W. and R.-Y. Yang, "Design of a triple-passband microstrip bandpass filter with compact sizes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2333-2341, 2010.
doi:10.1163/156939310793675736

24. Weng, R.-M. and P.-Y. Hsiao, "Double-layered quad-band bandpass filter for multi-band wireless systems," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2153-2161, 2009.
doi:10.1163/156939309790109324

25. Du, Y. and B. Liu, "A numerical method for electromagnetic scattering from dielectric rough surfaces based on the stochastic second degree method," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.
doi:10.2528/PIER09092501

26. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and F. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite finite element equations in electromagnetic problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207

27. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

28. Ebadi, S. and K. Forooraghi, "Green's function derivation of an annular waveguide for application in method of moment analysis of annular waveguide slot antennas," Progress In Electromagnetics Research, Vol. 89, 101-119, 2009.
doi:10.2528/PIER08121201

29. Norgren, M. and B. L. G. Jonsso, "The capacitance of the circular parallel plate capacitor obtained by solving the Love integral equation using an analytic expansion of the kernel," Progress In Electromagnetics Research, Vol. 97, 357-372, 2009.
doi:10.2528/PIER09092503

30. Zhang, G.-H., M. Y. Xia, and X.-M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003

31. Fan, Z. H., R.-S. Chen, H. Chen, D.-Z. Ding, "Weak form nonuniform fast fourier transform method for solving volume integral equations," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009.
doi:10.2528/PIER08121308

32. Chang, H.-W., Y.-H. Wu, S.-M. Lu, W.-C. Cheng, and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation-numerical investigation," Progress In Electromagnetics Research, Vol. 97, 159-176, 2009.
doi:10.2528/PIER09091402

33. Miraftab, V. and R. R. Mansour, "Computer-aided tuning of microwave filters using fuzzy logic," IEEE Trans. Microwave Theory Tech., Vol. 50, 2781-2788, Dec. 2002.
doi:10.1109/TMTT.2002.805291

34. Miraftab, V. and R. R. Mansour, "A robust fuzzy-logic technique for computer-aided diagnosis of microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 52, 450-456, Jan. 2004.
doi:10.1109/TMTT.2003.820895

35. Tayarani, M. and Y. Kami, "Qualitative analysis in engineering electromagnetic; an application to general transmission lines," IEIEC Transactions on Electronics, Vol. 84, No. 3, 364-375, Mar. 2001.

36. Guney, K. and N. Sarikaya, "Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms," Progress In Electromagnetics Research, Vol. 72, 279-306, 2007.
doi:10.2528/PIER07031302

37. Guney, K. and N. Sarikaya, "Concurrent neuro-fuzzy systems for resonant frequency computation of rectangular, circular and triangular microstrip antennas," Progress In Electromagnetics Research, Vol. 84, 253-277, 2008.
doi:10.2528/PIER08070603

38. Turkmen, M., S. Kaya, C. Yildiz, and K. Guney, "Adaptive neuro-fuzzy models for conventional coplanar waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008.
doi:10.2528/PIERB08031208

39. Mohdeb, N. and M. R. Mekideche, "Determination of the relative magnetic permeability by using an adaptive neuro-fuzzy inference system and 2D-FEM," Progress In Electromagnetics Research B, Vol. 22, 237-255, 2010.
doi:10.2528/PIERB10050201

40. Ostadzadeh, S. R., M. Soleimani, and M. Tayarani, "A fuzzy model for computing input impedance of two coupled dipole antennas in the echelon form," Progress In Electromagnetics Research, Vol. 78, 265-283, 2008.
doi:10.2528/PIER07091004

41. Ostadzadeh, S. R., M. Tayarani, and M. Soleimani, "A fuzzy model for computing back-scattering response from linearly loaded dipole antenna in the frequency domain," Progress In Electromagnetics Research, Vol. 86, 229-242, 2008.
doi:10.2528/PIER08081301

42. Dadgarnia, A. and A. A. Heidari, "A fast systematic approach for microstrip antenna design and optimization using ANFIS and GA," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2207-2221, 2010.
doi:10.1163/156939310793699037

43. Kabir, H., Y. Wang, M. Yu, and Q.-J. Zhang, "High-dimensional neural-network technique and applications to microwave filter modeling," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, 145-156, Jan. 2010.
doi:10.1109/TMTT.2009.2036412

44. Takagi, T. and M. Sugeno, "Fuzzy identification of systems and its application to modeling and control," IEEE Trans. On Systems, Man. and Cybernatics, Vol. 15, No. 1, 116-132, Jan./Feb. 1985.

45. Takagi, T. and M. Sugeno, "A fuzzy logic approach to qualitative modeling," IEEE Trans. On Fuzzy Systems, Vol. 1, No. 1, 1282-1285, Feb. 1993.

46. Shouraki, S. B. and N. Honda, "Recursive fuzzy modeling based on fuzzy interpolation," Journal of Advanced Computational Intelligence, Vol. 3, No. 2, 114-125, Apr. 1999.

47. Shouraki, S. B. and N. Honda, "Fuzzy interpretation of human intelligence," International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, Vol. 7, No. 4, 407-414, Aug. 1999.
doi:10.1142/S0218488599000362

48. Rizzi, P. A., Microwave Engineering: Passive Circuits, Prentice-Hall, 1988.


© Copyright 2014 EMW Publishing. All Rights Reserved