PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 121 > pp. 89-101

INTEGRATED WAVEGUIDE STRUCTURE FOR HIGHLY SENSITIVE THZ SPECTROSCOPY OF NANO-LITER LIQUIDS IN CAPILLARY TUBES

By V. Matvejev, C. De Tandt, W. Ranson, J. Stiens, R. Vounckx, and D. Mangelings

Full Article PDF (460 KB)

Abstract:
Terahertz dielectric spectroscopy permits the study of biomolecular interactions. However, water induces high attenuation of electromagnetic waves in the THz frequency range, obscuring the response of biomolecules. The developed sensor overcomes this problem by concentrating the THz wave propagating in an integrated waveguide on a small liquid volume contained within a capillary tube. Detailed electromagnetic modeling shows effective interaction between the THz waves and liquids. Transmission measurement results for capillary tubes filled with water and methanol mixtures demonstrate a substantial increase in sensitivity to changes of liquid permittivity. The current integrated sensor facilitates THz spectroscopy of biological liquids: a case study on buffered human serum albumin solution demonstrates a great potential to complement biochemical analytical tools.

Citation:
V. Matvejev, C. De Tandt, W. Ranson, J. Stiens, R. Vounckx, and D. Mangelings, "Integrated Waveguide Structure for Highly Sensitive THz Spectroscopy of Nano-Liter Liquids in Capillary Tubes," Progress In Electromagnetics Research, Vol. 121, 89-101, 2011.
doi:10.2528/PIER11090102
http://www.jpier.org/PIER/pier.php?paper=11090102

References:
1. Leitner, D. M., M. Gruebele, and M. Havenith, "Solvation dynamics of biomolecules: Modeling and terahertz experiments," HFSP J., Vol. 2, 314-323, Dec. 2008.

2. Born, B., S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, "The terahertz dance of water with the proteins: The effect of protein flexibility on the dynamical hydration shell of ubiquitin," Faraday Discuss., Vol. 141, 161-173, 2009.

3. Heyden, M., J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, and D. Marx, "Dissecting the THz spectrum of liquid water from first principles via correlations in time and space," Proc. Natl. Acad. Sci. USA, Vol. 107, 12068-12073, Jul. 2010.

4. Tielrooij, K. J., D. Paparo, L. Piatkowski, H. J. Bakker, and M. Bonn, "Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy," Biophys. J., Vol. 97, 2484-2492, Nov. 2009.

5. Hishida, M. and K. Tanaka, "Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy," Phys. Rev. Lett., Vol. 106, 158102, Apr. 2011.

6. Brucherseifer, M., M. Nagel, P. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of dna by time-domain terahertz sensing ," Appl. Phys. Lett., Vol. 77, 4049-4051, Dec. 2000.

7. Markelz, A., S. Whitmire, J. Hillebrecht, and R. Birge, "THz time domain spectroscopy of biomolecular conformational modes," Phys. Med. Biol., Vol. 47, 3797-3805, Nov. 2002.

8. Liu, R., M. He, R. Su, Y. Yu, W. Qi, and Z. He, "Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods," Biochem. Biophys. Res. Commun., Vol. 391, 862-867, Jan. 2010.

9. Markelz, A. G., "Terahertz dielectric sensitivity to biomolecular structure and function," IEEE J. Sel. Top. Quant., Vol. 14, 180-190, Jan.-Feb. 2008.

10. Markelz, A., A. Roitberg, and E. Heilweil, "Pulsed terahertz spectroscopy of dna, bovine serum albumin and collagen between 0.1 and 2.0 THz ," Chem. Phys. Lett., Vol. 320, 42-48, Mar. 2000.

11. Chen, J.-Y., J. R. Knab, J. Cerne, and A. G. Markelz, "Large oxidation dependence observed in terahertz dielectric response for cytochrome c ," Phys. Rev. E, Vol. 72, 040901, Oct. 2005.

12. Knab, J., J.-Y. Chen, and A. Markelz, "Hydration dependence of conformational dielectric relaxation of lysozyme," Biophys. J., Vol. 90, No. 7, 2576-2581, 2006.

13. Bolivar, P., M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of genes by time-domain terahertz sensing," Phys. Med. Biol., Vol. 47, 3815-3821, Nov. 2002.

14. Bolivar, P., M. Nagel, F. Richter, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free THz sensing of genetic sequences: Towards `THz biochips'," Philos. T. Roy. Soc. A, Vol. 362, 323-333, Feb. 2004.

15. Kasai, S., A. Tanabashi, K. Kajiki, T. Itsuji, R. Kurosaka, H. Yoneyama, M. Yamashita, H. Ito, and T. Ouchi, "Micro strip line-based on-chip terahertz integrated devices for high sensitivity biosensors," Appl. Phys. Express, Vol. 2, Jun. 2009.

16. Laurette, S., A. Treizebre, F. Affouard, and B. Bocquet, "Subterahertz characterization of ethanol hydration layers by microfluidic system ," Appl. Phys. Lett., Vol. 97, Sep. 2010.

17. Hasar, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.

18. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.

19. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1563-1574, 2010.

20. Matvejev, V., C. de Tandt, W. Ranson, and J. Stiens, "Wet silicon bulk micromachined THz waveguides for low-loss integrated sensor applications ," 2010 IEEE 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010), 2, Piscataway, NJ, USA, 2010.

21. Barthel, J., K. Bachhuber, R. Buchner, and H. Hetzenauer, "Dielectric spectra of some common solvents in the microwave region --- water and lower alcohols," Chem. Phys. Lett., Vol. 165, 369-373, Jan. 1990.

22. Li, E., Z.-P. Nie, G. Guo, Q. Zhang, Z. Li, and F. He, "Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method," Progress In Electromagnetics Research, Vol. 92, 103-120, 2009.

23. Addamo, G., G. Virone, D. Vaccaneo, R. Tascone, O. A. Peverini, and R. Orta, "An adaptive cavity setup for accurate measurements of complex dielectric permittivity," Progress In Electromagnetics Research, Vol. 105, 141-155, 2010.

24. Nishikata, A., "Scattering analysis for layered cylindrical object perpendicularly piercing the wider walls of a rectangular waveguide and its application to epsilon(r) and mu(r) measurement," IEEE T. Microw. Theory, Vol. 57, 1602-1611, Jun. 2009.

25. Bucinskas, J., L. Nickelson, and V. Sugurovas, "Microwave di®raction characteristic analysis of 2D multilayered uniaxial anisotropic cylinder ," Progress In Electromagnetics Research, Vol. 109, 175-190, 2010.

26. Hasar, U. C., O. Simsek, M. K. Zateroglu, and A. E. Ekinci, "A microwave method for unique and non-ambiguous permittivity determination of liquid materials from measured uncalibrated scattering parameters," Progress In Electromagnetics Research, Vol. 95, 73-85, 2009.

27. Kadiroglu, F. and U. C. Hasar, "A highly accurate microwave method for permittivity determination using corrected scattering parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2179-2189, 2010.

28. Luong, T. Q., P. K. Verma, R. K. Mitra, and M. Havenith, "Do hydration dynamics follow the structural perturbation during thermal denaturation of a protein: A terahertz absorption study ," Biophys. J., Vol. 101, 925-933, Aug. 17, 2011.


© Copyright 2014 EMW Publishing. All Rights Reserved