Vol. 125
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-02-14
Signal Propagation Analysis for Low Data Rate Wireless Sensor Network Applications in Sport Grounds and on Roads
By
Progress In Electromagnetics Research, Vol. 125, 1-19, 2012
Abstract
This paper presents results of a study to characterise wireless point-to-point channel for wireless sensor networks applications in sport hard court arenas, grass fields and on roads. Antenna height and orientation effects on coverage are also studied and results show that for omni-directional patch antenna, node range is reduced by a factor of 2 when the antenna orientation is changed from vertical to horizontal. The maximum range for a wireless node on a hard court sport arena has been determined to be 70 m for 0 dBm transmission but this reduces to 60 m on a road surface and to 50 m on a grass field. For horizontal antenna orientation the range on the road is longer than on the sport court which shows that scattered signal components from the rougher road surface combine to extend the communication range. The channels investigated showed that packet error ratio (PER) is dominated by large-scale, rather than small-scale, channel fading with an abrupt transition from low PER to 100% PER. Results also show that large-scale received signal power can be modeled with a 2nd order log-distance polynomial equation on the sport court and road, but a 1st order model is sufficient for the grass field. Small-scale signal variations have been found to have a Rice distribution for signal to noise ratio levels greater than 10 dB but the Rice K-factor exhibits significant variations at short distances which can be attributed to the influence of strong ground reflections.
Citation
David Lorater Ndzi, M. A. Mohd Arif, Ali Yeon Md. Shakaff, Mohd Noor Ahmad, Azizi Harun, Latifah M. Kamarudin, Ammar Zakaria, Mohd F. Ramli, and Mohammad Shahrazel Razalli, "Signal Propagation Analysis for Low Data Rate Wireless Sensor Network Applications in Sport Grounds and on Roads," Progress In Electromagnetics Research, Vol. 125, 1-19, 2012.
doi:10.2528/PIER11111406
References

1. Eady, F., Hands-on ZigBee Implementing 802.15.4 with Microcontrollers, Elsevier Inc., Newnes, United Kingdom, 2007, ISBN: 0123708877.

2. Halgamuge, M. N., M. Zukerman, K. Ramamohanarao, and H. L. Vu, "An estimation of sensor energy consumption," Progress In Electromagnetics Research B, Vol. 12, 259-295, 2009.

3. Liu, H.-Q., H.-C. So, K. W. K. Lui, and F. K. W. Chan, "Sensor selection for target tracking in sensor networks," Progress In Electromagnetics Research, Vol. 95, 267-282, 2009.

4. Liu, H.-Q. and H.-C. So, "Target tracking with line-of-sight identification in sensor networks under unknown measurement noises," Progress In Electromagnetics Research, Vol. 97, 373-389, 2009.

5. Sim, Z. W., R. Shuttleworth, M. J. Alexander, and B. D. Grieve, "Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks," Progress In Electromagnetics Research, Vol. 105, 273-294, 2010.

6. Nadimi, E. S., H. T. Sogaard, and T. Bak, "ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees," Biosystems Engineering, Vol. 100, 167-176, 2008.

7. Nadimi, E. S., H. T. Sogaard, T. Bak, and F. W. Oudshoorn, "ZigBee-based wireless sensor networks for monitoring animal presence and pasture time in a strip of new grass," Computers and Electronics in Agriculture, 1-9, 2007.

8. Lopez, M., S. Martinez, J. M. Gomez, A. Herms, L. Tort, J. Bausells, and A. Errachid, "Wireless monitoring of the pH, NH4+ and temperature in a fish farm," Procedia Chemistry, Vol. 1, 445-448, 2009.

9. Riquelme, J. A. L., F. Soto, J. Suardiaz, P. Sanchez, A. Iborra, and J. A. Vera, "Wireless sensor networks for precision horticulture in Southern Spain," Computers and Electronics in Agriculture, Vol. 68, 25-35, 2009.

10. Gay-Fernandez, J. A., M. Garcia Sanchez, I. Cuinas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.

11. Mitilineos, S. A., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, "Indoor localisation with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.

12. Verdone, R., D. Dardari, G. Mazzini, and A. Conti, Wireless Sensor and Actuator Networks Technologies, Analysis and Design, Academic Press, Elsevier Inc., United Kingdom, 2008.

13. Chen, Y., Z. Zhang, L. Hu, and P. B. Rapajic, "Geomatry-based statistical model for radio propagation in rectangular office buildings," Progress In Electromagnetics Research B, Vol. 17, 187-212, 2009.

14. Chen, Y., Z. Zhang, and T. Qin, "Geomatrically based channel model for indoor radio propagation with directional antennas," Progress In Electromagnetics Research B, Vol. 20, 109-124, 2010.

15. Howitt, I. L. and M. S. Khan, "A mode based approach for characterizing RF propagation in conduits," Progress In Electromagnetics Research B, Vol. 20, 49-64, 2010.

16. Su, W. and M. Alzaghal, "Channel propagation characteristics of wireless MICAz sensor nodes," Ad Hoc Networks, 1-11, 2008.

17. Wyne, S., T. Santos, F. Tufvesson, and A. F. Molisch, "Channel measurements of an indoor office scenario for wireless sensor applications," IEEE Global Communications Conf., 3831-3836, 2007.

18. K., M. Malajner, P. Planinsic, Z. Cucej, "Using RSSI value for distance estimation in wireless sensor networks based on ZigBee," IEEE Inter. Conf. on Systems, Signals and Image Processing, 303-306, 2008.

19. Xia, F., Y. C. Tian, Y. Li, and Y. Sun, "Wireless sensor/actuator network design for mobile control applications," Sensors, Vol. 7, 2157-2173, 2007.

20. Siden, J., A. Koptyug, M. Gulliksson, and H. E. Nilsson, "An action activated and self powered wireless forest fire detector," International Federal for Information Processing 2007, 47-58, 2007.

21. Phaebua, K., R. Suwalak, C. Phongcharoenpaniach, and M. Krairiksh, "Statistical characteristic measurements of propagation in durian orchard for sensor network at 5.8 GHz," IEEE Inter. Symposium on Communications and Information Technology, 520-523, 2008.

22. Kim, S., S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon, "Health monitoring of civil infrastructures using wireless sensor networks," Proc. of 6th Inter. Conf. on Information Processing in Sensor Networks, IPSN'07, 254-263, ACM Press, Cambridge, MA, Apr. 2007.

23. Anastasi, G., G. L. Re, and M. Ortolani, "WSNs for structural health monitoring of historical buildings," Conference on Human System Interactions, Catania, Italy, May 21-23, 2009.

24. Corredor, I., A. García, J. F. Martínez, and P. López, "Wireless sensor network-based system for measuring and monitoring road traffic," 6th CollECTeR Iberoamérica Conf., Madrid, Spain, Jun. 2008.

25. Iannizzotto, G., F. L. Rosa, and L. L. Bello, "A wireless sensor network for distributed autonomous traffic monitoring," 3rd Conference on Human System Interactions, HSI, Rzeszow, Poland, May 2010.

26. Llosa, J., I. Vilajosana, X. Vilajosana, N. Navarro, E. Surinach, and J. M. Marques, "REMOTE, a wireless sensor network based system to monitor rowing performance," Sensors, Vol. 9, 7069-7082, 2009.

27. Dhamdhere, A., H. Chen, A. Kurusingal, V. Sivaraman, and A. Burdett, "Experiments with wireless sensor networks for real-time Athlete monitoring," 5th IEEE Inter. Workshop on Practical Issues in Building Sensor Network Applications, SenseApp 2010, Denver, Colorado, USA, 2010.

28. Mottola, L., G. P. Picco, M. Ceriotti, S. Guna, and A. L. Murphy, "Not all wireless sensor networks are created equal: A comparative study on tunnels," ACM Trans. on Sensor Networks, Vol. 7, No. 2, Aug. 2010.

29. Shuai, M., K. Xie, X. Ma, and G. Song, "An on-road wireless sensor network approach for urban traffic state monitoring," Proc. of 11th Int. IEEE Conf. on Intelligent Transportation Systems, Beijing, China, Oct. 2008.

30. Megalingam, R. K., V. Mohan, M. Ajay, and P. L. S. Rizwin, "Wireless sensor network for vehicle speed monitoring and routing system," IET Int. Conf. on Wireless Sensor Network, Beijing, China, Nov. 2010.

31. Mouftah, H. T., M. Khanafer, and M. Guennoun, Wire-less sensor network architectures for intelligent vehicular systems, http://www.mcit.gov.sa/nr/rdonlyres/08880e2f-f4c9-4029-988f-05bf1379516d/0/paper2.pdf, accessed 14, Nov. 2011.

32. Franceschinis, M., L. Gioanola., M. Messere, R. Tomasi, M. A. Spirito, and P. Civera, "Wireless sensor networks for intelligent transportation systems," IEEE Vehicular Technology Conf., Barcelona, Spain, Jun. 2009.

33. Ndzi, D. L., K. Stuart, S. Toautachone, B. Vuksanovic, and D. A. Sanders, "Wideband sounder for dynamic and static wireless channel characterisation: Urban picocell channel model," Progress In Electromagnetics Research, Vol. 113, 285-312, 2011.

34. MRF24J40MA Datasheet: 2.4 GHz IEEE Std. 802.15.4 RF Transceiver Module (DS70329A), Microchip Technology Inc., 2008.

35. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Speci¯cations for Low-Rate Wireless Personal Area Networks (LR-WPAN) Standard 2003, 14, IEEE Computer Society, 2003.

36. Myneni, S. and T. Manolescu, MRF24J40 radio utility driver program, AN1192, Microchip Tech. Inc., 2009.

37. Mahalin, N. H., H. S. Sharifah, S. K. S. Yusof, N. Fisal, and R. A. Rashid, "RSSI measurements for enabling IEEE 802.15.4 coexistence with IEEE 802.11 b/g ," TENCON 2009, IEEE Region 10 Conference, 1-4, Singapore, 2009.

38. Petrova, M., R. Riihijarvi, P. Mahonen, and S. Labella, "Performance study of IEEE 802.15.4 using measurements and simulations," IEEE Wireless Communications and Networking Conference, (WCNC 2006), 487-492, Las Vegas, NV, Apr. 2006.

39. Shankar, P. M., Introduction to Wireless Systems, John Wiley & Sons Inc., New York, 2002.

40. Dal Bello, J. C. R., G. L. Siqueira, and L. Bertoni, "Theoretical analysis and measurement results of vegetation effects on path loss for mobile cellular communication systems," IEEE Transactions Vehicular Technology, 1285-1293, 2000.

41. NIST/SEMATECH, Engineering Statistics Handbook, http://itl.nist.gov/div898/handbook/eda/section3/eda35g.htm, Accessed 3, Oct. 2011.

42. Dobkin, D. M., RF Engineering for Wireless Networks, Hardware, Antennas and Propagation, Elsevier Inc., Newnes, United Kingdom, 2005.

43. Barclay, L., Propagation of Radiowaves, 2nd Ed., The Institution of Electrical Engineers, London, 2003.

44. Linnartz, J.-P. M. G. Wireless communication reference website, 1996-2004, http://wireless.per.nl/reference/chaptr03 /ricenaka/ricenaka.htm, Accessed 3, Oct. 2011.

45. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Path loss modeling for near-ground VHF radio-wave propagation throught forest with tree-canopy reflection effect," Progress In Electromagnetics Research M, Vol. 12, 131-141, 2010.