Vol. 124

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-02-06

Design of an Ultra-Wideband Power Divider via the Coarse-Grained Parallel Micro-Genetic Algorithm

By Lei Chang, Cheng Liao, Ling-Lu Chen, Wenbin Lin, Xuan Zheng, and Yan-Liang Wu
Progress In Electromagnetics Research, Vol. 124, 425-440, 2012
doi:10.2528/PIER11120517

Abstract

An ultra-wideband (UWB) power divider is designed in this paper. The UWB performance of this power divider is obtained by using a tapered microstrip line that consists of exponential and elliptic sections. The coarse grained parallel micro-genetic algorithm (PMGA) and CST Microwave Studio are combined to achieve an automated parallel design process. The method is applied to optimize the UWB power divider. The optimized power divider is fabricated and measured. The measured results show relatively low insertion loss, good return loss, and high isolation between the output ports across the whole UWB (3.1-10.6 GHz).

Citation


Lei Chang, Cheng Liao, Ling-Lu Chen, Wenbin Lin, Xuan Zheng, and Yan-Liang Wu, "Design of an Ultra-Wideband Power Divider via the Coarse-Grained Parallel Micro-Genetic Algorithm," Progress In Electromagnetics Research, Vol. 124, 425-440, 2012.
doi:10.2528/PIER11120517
http://www.jpier.org/PIER/pier.php?paper=11120517

References


    1. Chu, H. and X. Q. Shi, "Compact ultra-wideband bandpass filter based on SIW and DGS technology with a notch band," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 589-596, 2011.
    doi:10.1163/156939311794500304

    2. Saleem, R. and A. K. Brown, "Empirical miniaturization analysis of inverse parabolic step sequence based UWB antennas," Progress In Electromagnetics Research, Vol. 114, 369-381, 2011.

    3. Zhang, H., X.-W. Shi, F. Wei, and L. Xu, "Compact wideband Gysel power divider with arbitrary power division based on patch type structure," Progress In Electromagnetics Research, Vol. 119, 395-406, 2011.
    doi:10.2528/PIER11071501

    4. Wu, Y. and Y. Liu, "A unequal coupled-line Wilkinson power divider for arbitrary terminated impedances," Progress In Electromagnetics Research, Vol. 117, 181-194, 2011.

    5. Dai, G. L. and M. Y. Xia, "A dual-band unequal Wilkinson power divider using asymmetric coupled-line," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1587-1595, 2011.
    doi:10.1163/156939311797164981

    6. Wong, S. W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, 518-520, 2008.
    doi:10.1109/LMWC.2008.2001009

    7. Zhang, Z., Y.-C. Jiao, S. Tu, S.-M. Ning, and S.-F. Cao, "A miniaturized broadband 4 : 1 unequal Wilkinson power divider," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 505-511, 2010.

    8. Wei, F., L. Chen, X.-W. Shi, Q.-Y. Wu, and Q.-L. Huang, "Design of compact UWB power divider with one narrow notch-band," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2343-2352, 2010.
    doi:10.1163/156939310793675637

    9. Chieh, J. C. S and A. V. Pham, "Development of a wide bandwidth Wilkinson power divider on multilayer organic substrates," Microwave and Optical Technology Letters, Vol. 52, No. 7, 1606-1609, 2010.
    doi:10.1002/mop.25252

    10. Bialkowski, M. E. and A. M. Abbosh, "Design of a compact UWB out-of-phase power divider," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 289-291, 2007.
    doi:10.1109/LMWC.2007.892979

    11. Li, Q., X.-W. Shi, F. Wei, and J.-G. Gong, "A novel planar 180 degrees out-of-phase power divider for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 161-167, 2011.
    doi:10.1163/156939311793898288

    12. Dadgarpour, A., G. Dadashzadeh, M. Naser-Moghadasi, F. Jolani, and B. S. Virdee, "PSO/FDTD optimization technique for designing UWB in-phase power divider for linear array antenna application," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 424-427, 2010.
    doi:10.1109/LAWP.2010.2049977

    13. Song, K. J. and Q. Xue, "Novel ultra-wideband multilayer slotline power divider with bandpass response," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 1, 13-15, 2010.
    doi:10.1109/LMWC.2009.2035951

    14. Abbosh, A. M., "Ultra wideband in-phase power divider for multilayer technology," IET Microwaves, Antennas and Propagation, Vol. 3, No. 1, 148-153, 2009.
    doi:10.1049/iet-map:20070310

    15. Chiang, C. T. and B.-K. Chung, "Ultra wideband power divider using tapered line," Progress In Electromagnetics Research, Vol. 106, 61-73, 2010.
    doi:10.2528/PIER10061603

    16. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
    doi:10.2528/PIER11052205

    17. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
    doi:10.2528/PIER11052303

    18. Naghavi, A. H., M. Tondro-Aghmiyouni, M. Jahanbakht, and A. A. Lotfi Neyestanak, "Hybrid wideband microstrip Wilkinson power divider based on lowpass filter optimized using particle swarm method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14--15, 1877-1886, 2010.

    19. Wang, W.-B., Q. Feng, and D. Liu, "Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 115, 173-189, 2011.

    20. Xu, O., "Collimation lens design using AI-GA technique for gaussian radiators with arbitrary aperture field distribution," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5--6, 743-754, 2011.
    doi:10.1163/156939311794827113

    21. Dadgarnia, A. and A. A. Heidari, "A fast systematic approach for microstrip antenna design and optimization using ANFIS and GA," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2207-2221, 2010.
    doi:10.1163/156939310793699037

    22. Jian, L., G. Xu, J. Song, H. Xue, D. Zhao, and J. Liang, "Optimum design for improving modulating-effect of coaxial magnetic gear using response surface methodology and genetic algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.

    23. Wang, W., W. C. Li, Z. R. Lan, D. Chen, and K. Zhang, "Optimal design of the dual-frequency Wilkinson power divider with the genetic algorithm," Journal of Xidian University, Vol. 37, No. 2, 353-358, 2010.

    24. Chen, X., G. S. Wang, and K. Huang, "A novel wideband and compact microstrip grid array antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 596-599, 2010.
    doi:10.1109/TAP.2009.2037769

    25. Wang, G. S., S. Y. Lin, W. D. Fang, and W. X. Zhang, "Design of a compact wideband high-gain microstrip grid array antenna," Microwave and Optical Technology Letters, Vol. 53, No. 5, 1144-1147, 2011.
    doi:10.1002/mop.25895

    26. Tsai, C. C., H. C. Huang, and C. K. Chan, "Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation," IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, 4813-4821, 2011.
    doi:10.1109/TIE.2011.2109332

    27. Pu, T. L., K. M. Huang, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1207-1217, 2010.
    doi:10.1163/156939310791586025

    28. Wang, H., H. Zhang, Z. Wang, and K. Huang, "Matching network design for a monopole antenna using the micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14--15, 2063-2072, 2009.
    doi:10.1163/156939309789932539

    29. Zhai, Y. W., X. W. Shi, and Y. J. Zhao, "Optimized design of ideal and actual transformer based on improved micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1761-1771, 2007.

    30. Chakravarty, S. and R. Mittra, "Design of a frequency selective surface (FSS) with very low cross-polarization discrimination via the parallel micro-genetic algorithm (PMGA)," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 596-599, 2003.
    doi:10.1109/TAP.2003.813637

    31. Yusof, R., M. Khalid, G. T. Hui, S. M. Yusof, and M. F. Othman, "Solving job shop scheduling problem using a hybrid parallel micro genetic algorithm," Applied Soft Computing, Vol. 11, No. 8, 5782-5792, 2011.
    doi:10.1016/j.asoc.2011.01.046

    32. Hongesombut, K., Y. Mitani, S. Dechanupaprittha, I. Ngamroo, K. Pasupa, and J. Tippayachai, Power system stabilizer tuning based on multiobjective design using hierarchical and parallel micro genetic algorithm, POWERCON --- International Conference on Power System Technology, 402-407, Singapore, 2004.