Vol. 126

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-03-14

Fast Antenna Characterization Using the Sources Reconstruction Method on Graphics Processors

By Jesus A. Lopez-Fernandez, Miguel Lopez-Portugues, Yuri Alvarez-Lopez, Cebrian Garcia-Gonzalez, David Martínez, and Fernando Las Heras Andres
Progress In Electromagnetics Research, Vol. 126, 185-201, 2012
doi:10.2528/PIER11121408

Abstract

The Sources Reconstruction Method (SRM) is a non-invasive technique for, among other applications, antenna characterization. The SRM is based on obtaining a distribution of equivalent currents that radiate the same field as the antenna under test. The computation of these currents requires solving a linear system, usually ill-posed, that may be very computationally demanding for commercial antennas. Graphics Processing Units (GPUs) are an interesting hardware choice for solving compute-bound problems that are prone to parallelism. In this paper, we present an implementation on GPUs of the SRM applied to antenna characterization that is based on a compute-bound algorithm with a high degree of parallelism. The GPU implementation introduced in this work provides a dramatic reduction on the time cost compared to our CPU implementation and, in addition, keeps the low-memory footprint of the latter. For the sake of illustration, the equivalent currents are obtained on a base station antenna array and a helix antenna working at practical frequencies. Quasi real-time results are obtained on a desktop workstation.

Citation


Jesus A. Lopez-Fernandez, Miguel Lopez-Portugues, Yuri Alvarez-Lopez, Cebrian Garcia-Gonzalez, David Martínez, and Fernando Las Heras Andres, "Fast Antenna Characterization Using the Sources Reconstruction Method on Graphics Processors," Progress In Electromagnetics Research, Vol. 126, 185-201, 2012.
doi:10.2528/PIER11121408
http://www.jpier.org/PIER/pier.php?paper=11121408

References


    1. Álvarez, Y. and F. Las-Heras, "Integral equation algorithms for equivalent currents distribution retrieval over arbitrary three-dimensional surfaces," IEEE International Symposium on Antennas and Propagation, 1061-1064, Albuquerque, New Mexico, USA, July 9-14, 2006.

    2. Álvarez, Y., F. Las-Heras, M. R. Pino, "On the comparison between the spherical wave expansion and the sources reconstruction method," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3337-3341, 2008.
    doi:10.1109/TAP.2008.929519

    3. Álvarez, Y., F. Las-Heras, M. R. Pino, and J. A. López, "Acceleration of the sources reconstruction method via the fast multipole method," IEEE International Symposium on Antennas and Propagation, 1-4, San Diego, California, USA, July 5-11, 2008.

    4. Álvarez, Y., F. Las-Heras, and M. R. Pino, Application of the adaptive cross approximation algorithm to the sources reconstruction method, 3rd European Conference on Antennas and Propagation, 761-765, Berlin, Germany, March 23-27, 2009.

    5. Álvarez, Y., F. Las-Heras, B. A. Casas, and C. García, "Antenna diagnostics using arbitrary-geometry field acquisition domains," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 375-378, 2009.
    doi:10.1109/LAWP.2009.2019108

    6. Araújo, M. G., J. M. Taboada, F. Obelleiro, J. M. Bértolo, L. Landesa, J. Rivero, and J. L. Rodríguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.
    doi:10.2528/PIER09121007

    7. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

    8. Capozzoli, A., C. Curcio, G. D'Elia, and A. Liseno, "Singular-value optimization in plane-polar near-field antenna characterization," IEEE Transactions on Antennas Propagation, Vol. 52, No. 2, 103-112, 2010.

    9. Capozzoli, A., C. Curcio, A. Liseno, and P. Vinetti, "Field sampling and field reconstruction: A new perspective," Radio Science, Vol. 45, RS6004, 31, 2010, doi: 10.1029/2009RS004298.

    10. Eibert, T. and C. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing Rao-Wilton-Glisson discretization of electric and magnetic surface currents ," IEEE Transactions on Antennas Propagation, Vol. 57, No. 4, 1178-1185, 2009.
    doi:10.1109/TAP.2009.2015828

    11. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multi-level fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
    doi:10.2528/PIER10061604

    12. Hansen, J. E., Spherical Near-field Antenna Measurements, Vol. 26, Peter Peregrinus Ltd., London, 1988.

    13. Inan, K. and R. E. Diaz, "On the uniqueness of the phase retrieval problem from far field amplitude-only data," IEEE Transactions on Antennas Propagation, Vol. 59, No. 3, 1053-1057, March 2011.
    doi:10.1109/TAP.2010.2103000

    14. Las-Heras, F., M. R. Pino, S. Loredo, Y. Álvarez, and T. K. Sarkar, "Evaluating near-field radiation patterns of commercial antennas," IEEE Transactions on Antennas Propagation, Vol. 54, No. 8, 2198-2207, 2006.
    doi:10.1109/TAP.2006.879190

    15. López, Y. A., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Transactions on Antennas Propagation, Vol. 55, No. 12, 3460-3468, 2007.
    doi:10.1109/TAP.2007.910316

    16. López, Y. A., C. Capellin, F. L. Andrés, and O. Breinbjerg, "On the comparison of the spherical wave expansion-to-plane wave expansion and the sources reconstruction method for antenna diagnostics ," Progress In Electromagnetics Research, Vol. 87, 245-262, 2008.

    17. López, Y. A., F. L. Andrés, M. R. Pino, and T. K. Sarkar, "An improved super-resolution source reconstruction method," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 11, 3855-3866, 2009.
    doi:10.1109/TIM.2009.2020847

    18. Lindholm, E., J. Nickolls, S. Oberman, and J. Montrym, "NVIDIA Tesla: A unified graphics and computing architecture," IEEE Micro., Vol. 28, No. 2, 39-55, 2008.
    doi:10.1109/MM.2008.31

    19. NVIDIA Corporation, NVIDIA CUDA C Programming Guide, ver. 3.2, November 2010, http://developer.download.nvidia.com/.

    20. Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU computing," Proceedings of the IEEE, Vol. 5, No. 96, 879-899, 2008.
    doi:10.1109/JPROC.2008.917757

    21. Persson, K. and M. Gustafson, "Reconstruction of equivalent currents using a near-field data transformation --- With radome application," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
    doi:10.2528/PIER04111602

    22. Persson, K. and M. Gustafson, "Reconstruction of equivalent currents using a near-field data transformation --- With radome application," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
    doi:10.2528/PIER04111602

    23. Ponnapalli, S., "Near-field to far-field transformation utilizing the conjugate gradient method," Progress In Electromagnetics Research, Vol. 5, 391-422, 1991.

    24. Quijano, J. L. A. and G. Vecchi, "Improved-accuracy source reconstruction on arbitrary 3-D surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1046-1049, 2009.
    doi:10.1109/LAWP.2009.2031988

    25. Quijano, J. L. A. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
    doi:10.2528/PIER10030309

    26. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
    doi:10.1109/TAP.1982.1142818

    27. Taboada, J. M., M. G. Araújo, J. M. Bértolo, L. Landesa, F. Obelleiro, and J. L. Rodríguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
    doi:10.2528/PIER10041603

    28. Tamayo, J. M., A. Heldring, and J. M. Rius, "Application of multilevel adaptive cross approximation (MLACA) to electromagnetic scattering and radiation problems," International Conference on Electromagnetics in Advanced Applications, 178-181, 2009.
    doi:10.1109/ICEAA.2009.5297536

    29. The OpenMP ARB, "OpenMP," 2004, www.openmp.org.

    30. Wang, H.-C. and K. Hwang, "Multicoloring of grid-structured PDE solvers on shared-memory multiprocessors," IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 11, 1195-1205, 1995.
    doi:10.1109/71.476191

    31. Yaghjian, A. D., "An overview of near-field antenna measurements," IEEE Transactions on Antennas Propagation, Vol. 34, No. 1, 30-45, 1986.
    doi:10.1109/TAP.1986.1143727

    32. Zhang, Y. and T. Sarkar, "Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain," John Wiley & IEEE Press, Hoboken, NJ, 2009.

    33. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems ," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
    doi:10.1109/TEMC.2005.857898

    34. Revised IEEE Std 145-1993, IEEE standard definitions of terms for antennas, Vol. 31-2, 5 IEEE Transactions on Antennas and Propagation, 1983.