Vol. 126
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-14
Fast Antenna Characterization Using the Sources Reconstruction Method on Graphics Processors
By
Progress In Electromagnetics Research, Vol. 126, 185-201, 2012
Abstract
The Sources Reconstruction Method (SRM) is a non-invasive technique for, among other applications, antenna characterization. The SRM is based on obtaining a distribution of equivalent currents that radiate the same field as the antenna under test. The computation of these currents requires solving a linear system, usually ill-posed, that may be very computationally demanding for commercial antennas. Graphics Processing Units (GPUs) are an interesting hardware choice for solving compute-bound problems that are prone to parallelism. In this paper, we present an implementation on GPUs of the SRM applied to antenna characterization that is based on a compute-bound algorithm with a high degree of parallelism. The GPU implementation introduced in this work provides a dramatic reduction on the time cost compared to our CPU implementation and, in addition, keeps the low-memory footprint of the latter. For the sake of illustration, the equivalent currents are obtained on a base station antenna array and a helix antenna working at practical frequencies. Quasi real-time results are obtained on a desktop workstation.
Citation
Jesus A. Lopez-Fernandez, Miguel Lopez-Portugues, Yuri Alvarez-Lopez, Cebrian Garcia-Gonzalez, David Martínez, and Fernando Las Heras Andres, "Fast Antenna Characterization Using the Sources Reconstruction Method on Graphics Processors," Progress In Electromagnetics Research, Vol. 126, 185-201, 2012.
doi:10.2528/PIER11121408
References

1. Álvarez, Y. and F. Las-Heras, "Integral equation algorithms for equivalent currents distribution retrieval over arbitrary three-dimensional surfaces," IEEE International Symposium on Antennas and Propagation, 1061-1064, Albuquerque, New Mexico, USA, July 9-14, 2006.

2. Álvarez, Y., F. Las-Heras, M. R. Pino, "On the comparison between the spherical wave expansion and the sources reconstruction method," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3337-3341, 2008.
doi:10.1109/TAP.2008.929519

3. Álvarez, Y., F. Las-Heras, M. R. Pino, and J. A. López, "Acceleration of the sources reconstruction method via the fast multipole method," IEEE International Symposium on Antennas and Propagation, 1-4, San Diego, California, USA, July 5-11, 2008.

4. Álvarez, Y., F. Las-Heras, and M. R. Pino, "Application of the adaptive cross approximation algorithm to the sources reconstruction method," 3rd European Conference on Antennas and Propagation, 761-765, Berlin, Germany, March 23-27, 2009.

5. Álvarez, Y., F. Las-Heras, B. A. Casas, and C. García, "Antenna diagnostics using arbitrary-geometry field acquisition domains," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 375-378, 2009.
doi:10.1109/LAWP.2009.2019108

6. Araújo, M. G., J. M. Taboada, F. Obelleiro, J. M. Bértolo, L. Landesa, J. Rivero, and J. L. Rodríguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.
doi:10.2528/PIER09121007

7. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

8. Capozzoli, A., C. Curcio, G. D'Elia, and A. Liseno, "Singular-value optimization in plane-polar near-field antenna characterization," IEEE Transactions on Antennas Propagation, Vol. 52, No. 2, 103-112, 2010.

9. Capozzoli, A., C. Curcio, A. Liseno, and P. Vinetti, "Field sampling and field reconstruction: A new perspective," Radio Science, Vol. 45, RS6004, 31, 2010, doi: 10.1029/2009RS004298.

10. Eibert, T. and C. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing Rao-Wilton-Glisson discretization of electric and magnetic surface currents ," IEEE Transactions on Antennas Propagation, Vol. 57, No. 4, 1178-1185, 2009.
doi:10.1109/TAP.2009.2015828

11. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multi-level fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
doi:10.2528/PIER10061604

12. Hansen, J. E., Spherical Near-field Antenna Measurements, Vol. 26, Peter Peregrinus Ltd., London, 1988.

13. Inan, K. and R. E. Diaz, "On the uniqueness of the phase retrieval problem from far field amplitude-only data," IEEE Transactions on Antennas Propagation, Vol. 59, No. 3, 1053-1057, March 2011.
doi:10.1109/TAP.2010.2103000

14. Las-Heras, F., M. R. Pino, S. Loredo, Y. Álvarez, and T. K. Sarkar, "Evaluating near-field radiation patterns of commercial antennas," IEEE Transactions on Antennas Propagation, Vol. 54, No. 8, 2198-2207, 2006.
doi:10.1109/TAP.2006.879190

15. López, Y. A., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Transactions on Antennas Propagation, Vol. 55, No. 12, 3460-3468, 2007.
doi:10.1109/TAP.2007.910316

16. López, Y. A., C. Capellin, F. L. Andrés, and O. Breinbjerg, "On the comparison of the spherical wave expansion-to-plane wave expansion and the sources reconstruction method for antenna diagnostics ," Progress In Electromagnetics Research, Vol. 87, 245-262, 2008.

17. López, Y. A., F. L. Andrés, M. R. Pino, and T. K. Sarkar, "An improved super-resolution source reconstruction method," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 11, 3855-3866, 2009.
doi:10.1109/TIM.2009.2020847

18. Lindholm, E., J. Nickolls, S. Oberman, and J. Montrym, "NVIDIA Tesla: A unified graphics and computing architecture," IEEE Micro., Vol. 28, No. 2, 39-55, 2008.
doi:10.1109/MM.2008.31

19. NVIDIA Corporation, , NVIDIA CUDA C Programming Guide, ver. 3.2, November 2010, http://developer.download.nvidia.com/.

20. Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU computing," Proceedings of the IEEE, Vol. 5, No. 96, 879-899, 2008.
doi:10.1109/JPROC.2008.917757

21. Persson, K. and M. Gustafson, "Reconstruction of equivalent currents using a near-field data transformation --- With radome application," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602

22. Persson, K. and M. Gustafson, "Reconstruction of equivalent currents using a near-field data transformation --- With radome application," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602

23. Ponnapalli, S., "Near-field to far-field transformation utilizing the conjugate gradient method," Progress In Electromagnetics Research, Vol. 5, 391-422, 1991.

24. Quijano, J. L. A. and G. Vecchi, "Improved-accuracy source reconstruction on arbitrary 3-D surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1046-1049, 2009.
doi:10.1109/LAWP.2009.2031988

25. Quijano, J. L. A. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309

26. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

27. Taboada, J. M., M. G. Araújo, J. M. Bértolo, L. Landesa, F. Obelleiro, and J. L. Rodríguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

28. Tamayo, J. M., A. Heldring, and J. M. Rius, "Application of multilevel adaptive cross approximation (MLACA) to electromagnetic scattering and radiation problems," International Conference on Electromagnetics in Advanced Applications, 178-181, 2009.
doi:10.1109/ICEAA.2009.5297536

29. The OpenMP ARB "OpenMP," 2004, www.openmp.org.

30. Wang, H.-C. and K. Hwang, "Multicoloring of grid-structured PDE solvers on shared-memory multiprocessors," IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 11, 1195-1205, 1995.
doi:10.1109/71.476191

31. Yaghjian, A. D., "An overview of near-field antenna measurements," IEEE Transactions on Antennas Propagation, Vol. 34, No. 1, 30-45, 1986.
doi:10.1109/TAP.1986.1143727

32. Zhang, Y. and T. Sarkar, "Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain," John Wiley & IEEE Press, Hoboken, NJ, 2009.

33. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems ," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

34. Revised IEEE Std 145-1993, , IEEE standard definitions of terms for antennas, Vol. 31-2, 5 IEEE Transactions on Antennas and Propagation, 1983.