1. Roden, J. A., S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementations," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 4, 420-427, 1998.
doi:10.1109/22.664143 Google Scholar
2. Maloney, J. G. and M. P. Kesler, "Analysis of antenna arrays using the split-field update FDTD method," Antennas and Propagation Society International Symposium, IEEE, 2036-2039, 1998. Google Scholar
3. Wu, B., E. Yang, J. A. Kong, J. A. Oswald, K. A. McIntosh, L. Mahoney, and S. Verghese, "Analysis of photonic crystal filters by the finite-difference time-domain technique," Microwave Opt. Technol. Lett., Vol. 27, No. 2, 81-87, 2000.
doi:10.1002/1098-2760(20001020)27:2<81::AID-MOP2>3.0.CO;2-S Google Scholar
4. Mosallaei, H. and Y. Rahmat-Samii, "Grand challenges in analyzing EM band-gap structures: An FDTD/Prony technique based on the split-field approach," Antennas and Propagation Society International Symposium, IEEE, 47-50, 2001. Google Scholar
5. Farahat, N. and R. Mittra, "Analysis of frequency selective surfaces using the finite difference time domain (FDTD) method," Antennas and Propagation Society International Symposium, IEEE, 568-571, 2002. Google Scholar
6. Amjadi, S. M. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
doi:10.2528/PIERB07122402 Google Scholar
7. Belkhir, A. and F. I. Baida, "Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome ," Phys. Rev. E, Vol. 77, No. 5, 056701, 2008.
doi:10.1103/PhysRevE.77.056701 Google Scholar
8. Oh, C. and M. J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: An efficient FDTD implementation," Opt. Express, Vol. 14, No. 24, 11870-11884, 2006.
doi:10.1364/OE.14.011870 Google Scholar
9. Baida, F. I. and A. Belkhir, "Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures," Opt. Lett., Vol. 34, No. 16, 2453-2455, 2009.
doi:10.1364/OL.34.002453 Google Scholar
10. Belkhir, A., O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, "Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence ," Phys. Rev. E, Vol. 81, 046705, 2010.
doi:10.1103/PhysRevE.81.046705 Google Scholar
11. Shahmansouri, A. and B. Rashidian, "Comprehensive three-dimensional split-field finite difference time-domain method for analysis of periodic plasmonic nanostructures: Near- and far-field formulation," J. Opt. Soc. Am. B, Vol. 28, No. 11, 2690-2700, 2011.
doi:10.1364/JOSAB.28.002690 Google Scholar
12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference-Time-Domain Method, Artech House, 2005.
13. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026 Google Scholar
14. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method ," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075 Google Scholar
15. Wang, S., F. L. Teixeira, and J. Chen, "An iterative ADI-FDTD with reduced splitting error," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 2, 92-94, 2005.
doi:10.1109/LMWC.2004.842835 Google Scholar
16. Ahmed, I. and Z. Chen, "Error reduced ADI-FDTD methods," IEEE Antennas Wireless Propag. Lett., Vol. 4, 323-325, 2005.
doi:10.1109/LAWP.2005.855630 Google Scholar
17. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381 Google Scholar
18. Li, E., I. Ahmed, and R. Vahldieck, "Numerical dispersion analysis with an improved LOD-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 5, 319-321, 2007.
doi:10.1109/LMWC.2007.895687 Google Scholar
19. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-DMaxwel's equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, 2007.
doi:10.1109/LMWC.2006.890166 Google Scholar
20. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3596-3600, 2008.
doi:10.1109/TAP.2008.2005544 Google Scholar
21. Shibayama, J., A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, "A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices ," IEEE J. Quantum Electron., Vol. 46, No. 1, 40-49, 2010.
doi:10.1109/JQE.2009.2024328 Google Scholar
22. Yu, W., R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite-Difference Time-Domain Method, Artech House, 2006.
23. Schneider, R. N., L. E. Turner, and M. M. Okoniewski, "Application of FPGA technology to accelerate the finite difference time-domain (FDTD) method," FPGA'02 Proc. of the ACM/SIGDA Tenth Int. Symp. on Field-programmable Gate Arrays, ACM, 2002. Google Scholar
24. Inman, M. J., A. Z. Elsherbeni, and C. E. Smith, "FDTD calculations using graphical processing units," IEEE/ACES Int. Conf. on Wireless Communications and Applied Computational Electromagnetics, 728-731, 2005.
doi:10.1109/WCACEM.2005.1469689 Google Scholar
25. Adams, S., J. Payne, and R. Boppana, "Finite difference time domain (FDTD) simulations using graphics processors," DOD High Performance Computing Modernization Program Users Group Conf., IEEE, 334-338, 2007.
doi:10.1109/HPCMP-UGC.2007.34 Google Scholar
26. Sypek, P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Trans. Magn., Vol. 45, No. 3, 1324-1327, 2009.
doi:10.1109/TMAG.2009.2012614 Google Scholar
27. Nagaoka, T. and S. Watanabe, "A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis," Engineering in Medicine and Biology Society on Annu. Int. Conf. of the IEEE, 327-330, 2010.
28. Zunoubi, M. R., J. Payne, and W. P. Roach, "CUDA implementation of TEz-FDTD solution of Maxwell's equations in dispersive media," IEEE Antennas Wireless Propag. Lett., Vol. 9, 756-759, 2010.
doi:10.1109/LAWP.2010.2060181 Google Scholar
29. Tay, W. C., D. Y. Heh, and E. L. Ta, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605 Google Scholar
30. Toivanen, J. I., T. P. Stefanski, N. Kuster, and N. Chavannes, "Comparison of CPML implementations for the GPU-accelerated FDTD solver," Progress In Electromagnetics Research M, Vol. 19, 61-75, 2011.
doi:10.2528/PIERM11061002 Google Scholar
31. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011. Google Scholar
32. Ma, L. C. and R. Mittra, "Parallel implementation of the periodic boundary condition (PBC) in the FDTD for the investigation of spatial filters," Antennas and Propagation Society International Symposium, IEEE, 1-4, 2008. Google Scholar
33. Mao, Y., B. Chen, B. Zhou, L. Cheng, and Q. Wu, "Parallel implementation of the split-field FDTD method for the analysis of periodic structure," 8’th International Symp. Antennas, Propagation and EM Theory, IEEE, 875-878, 2008. Google Scholar
34. Roden, J. A., J. P. Skinner, and S. L. Johns, "Shielding effectiveness of three dimensional gratings using the periodic FDTD technique and CPML absorbing boundary condition," IEEE/ACES Int. Conf. on Wireless Communications and Applied Computational Electromagnetics, 128-131, 2005.
doi:10.1109/WCACEM.2005.1469545 Google Scholar
35. http://www.nvidia.com.
36. NVIDIA CUDA C Programming Guide, Version 3.2, NVIDIA, 2010.
37. Vial, A., A. Grimault, D. Mac´ıas, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method ," Phys. Rev. B, Vol. 71, No. 8, 085416, 2005.
doi:10.1103/PhysRevB.71.085416 Google Scholar
38. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon, 1980.
39. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.
40. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, 1983.
41. Lee, K. S. and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B, Vol. 110, No. 39, 19220-19225, 2006.
doi:10.1021/jp062536y Google Scholar
42. Larsson, E. M., C. Langhammer, I. Zoric, and B. Kasemo, "Nanoplasmonic probes of catalytic reactions," Science, Vol. 326, 1091-1094, 2009.
doi:10.1126/science.1176593 Google Scholar
43. Bera, M. and M. Ray, "Precise detection and signature of biological/chemical samples based on surface plasmon resonance (SPR)," J. Opt., Vol. 38, No. 4, 232-248, 2009.
doi:10.1007/s12596-009-0021-x Google Scholar
44. Shankaran, D. R., K. V. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sensors and Actuators B, Vol. 121, 158-177, 2007.
doi:10.1016/j.snb.2006.09.014 Google Scholar
45. Ankerm, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonicnanosensors," Nature Materials, Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162 Google Scholar
46. Bingham, J. M., J. N. Anker, L. E. Kreno, and R. P. Van Duyne, "Gas sensing with high-resolution localized surface plasmon resonance spectroscopy," J. Am. Chem. Soc., Vol. 132, 17358-17359, 2010.
doi:10.1021/ja1074272 Google Scholar
47. Nau, D., A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, "Hydrogen sensor based on metallic photonic crystal slabs," Opt. Lett., Vol. 35, No. 18, 3150-3152, 2010.
doi:10.1364/OL.35.003150 Google Scholar
48. Homola, J., Surface Plasmon Resonance Based Sensors, Springer, Berlin, 2006.
49. Charles, D. E., M. Gara, D. Aherne, D. M. Ledwith, J. M. Kelly, W. J. Blau, and M. E. Brennan-Fournet, "Scaling of surface plasmon resonances in triangular silver nanoplate sols for enhanced refractive index sensing," Plasmonics, Vol. 6, 351-362, 2011.
doi:10.1007/s11468-011-9211-x Google Scholar
50. Steinbrück, A., O. Stranik, A. Csaki, and W. Fritzsche, "Sensoric potential of gold-silver core-shell nanoparticles," Anal. Bioanal. Chem., Vol. 401, 1241-1249, 2011.
doi:10.1007/s00216-011-5177-y Google Scholar
51. Svedendahl, M., S. Chen, A. Dmitriev, and M. Käll, "Refractometric sensing using propagating versus localized surface plasmons: A direct comparison," Nano Lett., Vol. 9, No. 12, 4428-4433, 2009.
doi:10.1021/nl902721z Google Scholar
52. Rodríguez-Cantó, P. J., M. Martínez-Marco, F. J. Rodríguez-Fortuño, B. Tomás-Navarro, R. Ortuño, S. Peransí-Llopis, and A. Martínez, "Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon," Opt. Express, Vol. 19, No. 8, 7664-7672, 2011.
doi:10.1364/OE.19.007664 Google Scholar
53. Sosnova, M. V., N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, "Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications," Appl. Phys. B, Vol. 99, 493-497, 2010.
doi:10.1007/s00340-009-3799-y Google Scholar
54. Ameling, R., L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, "Cavity-enhanced localized plasmon resonance sensing," Appl. Phys. Lett., Vol. 97, 253116, 2010.
doi:10.1063/1.3530795 Google Scholar
55. Ye, J. and P. Van Dorpe, "Improvement of figure of merit for gold nanobar array plasmonic sensors," Plasmonics, Vol. 6, 665-671, 2011.
doi:10.1007/s11468-011-9249-9 Google Scholar
56. Jiang, H., J. Markowski, and J. Sabarinathan, "Near-infrared optical response of thin film pH-sensitive hydrogel coated on a gold nanocrescent array," Opt. Express, Vol. 17, No. 24, 21802-21807, 2009.
doi:10.1364/OE.17.021802 Google Scholar
57. Rodríguez-Fortuño, F. J., M. Martínez-Marco, B. Tomás-Navarro, R. Ortuño, J. Martí, A. Martínez, and P. J. Rodríguez-Cantó, "Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses," Appl. Phys. Lett., Vol. 98, 133118, 2011.
doi:10.1063/1.3558916 Google Scholar
58. Kubo, W. and S. Fujikawa, "Au double nanopillars with nanogap for plasmonic sensor," Nano Lett., Vol. 11, 8-15, 2011.
doi:10.1021/nl100787b Google Scholar
59. Lamprecht, B., G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett., Vol. 84, No. 20, 4721-4724, 2000.
doi:10.1103/PhysRevLett.84.4721 Google Scholar
60. Zou, S. and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys., Vol. 121, No. 24, 2004.
doi:10.1063/1.1826036 Google Scholar
61. Chu, Y., E. Schonbrun, T. Yang, and K. B. Crozier, "Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays," Appl. Phys. Lett., Vol. 93, 181108, 2008.
doi:10.1063/1.3012365 Google Scholar
62. Offermans, P., M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, "Universal scaling of the figure of merit of plasmonic sensors," ACS Nano, Vol. 5, No. 6, 5151-5157, 2011.
doi:10.1021/nn201227b Google Scholar
63. Kravets, V. G., F. Schedin, A. V. Kabashin, and A. N. Grigorenko, "Sensitivity of collective plasmon modes of gold nanoresonators to local environment," Opt. Lett., Vol. 35, No. 7, 956-958, 2010.
doi:10.1364/OL.35.000956 Google Scholar