Vol. 125
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-02-18
GPU Implementation of Split-Field Finite-Difference Time-Domain Method for Drude-Lorentz Dispersive Media
By
Progress In Electromagnetics Research, Vol. 125, 55-77, 2012
Abstract
Split-field finite-difference time-domain (SF-FDTD) meth-od can overcome the limitation of ordinary FDTD in analyzing periodic structures under oblique incidence. On the other hand, huge run times of 3D SF-FDTD, is practically a major burden in its usage for analysis and design of nanostructures, particularly when having dispersive media. Here, details of parallel implementation of 3D SF-FDTD method for dispersive media, combined with total-field/scattered-field (TF/SF) method for injecting oblique plane wave, are discussed. Graphics processing unit (GPU) has been used for this purpose, and very large speed up factors have been achieved. Also a previously reported formulation of SF-FDTD based on the Drude model for dispersive media, is extended to cover Drude-Lorentz model, which is usually needed for materials such as gold. The resulting reduction in the number of variables in this formulation, not only helps in reducing the computational time, but also makes it possible to be implemented in GPU, where its memory limitation is a major concern. As an example for demonstrating the importance of this method in optimization of nanophotonics structures, improvement in the performance of a refractive index sensor, made of an array of nanodisks, using suitable angle of incidence is reported. To the best of our knowledge this is the first report of GPU implementation of SF-FDTD method, capable of analyzing periodic dispersive media under oblique incidence.
Citation
Afsaneh Shahmansouri, and Bizhan Rashidian, "GPU Implementation of Split-Field Finite-Difference Time-Domain Method for Drude-Lorentz Dispersive Media," Progress In Electromagnetics Research, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505
References

1. Roden, J. A., S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementations," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 4, 420-427, 1998.
doi:10.1109/22.664143        Google Scholar

2. Maloney, J. G. and M. P. Kesler, "Analysis of antenna arrays using the split-field update FDTD method," Antennas and Propagation Society International Symposium, IEEE, 2036-2039, 1998.        Google Scholar

3. Wu, B., E. Yang, J. A. Kong, J. A. Oswald, K. A. McIntosh, L. Mahoney, and S. Verghese, "Analysis of photonic crystal filters by the finite-difference time-domain technique," Microwave Opt. Technol. Lett., Vol. 27, No. 2, 81-87, 2000.
doi:10.1002/1098-2760(20001020)27:2<81::AID-MOP2>3.0.CO;2-S        Google Scholar

4. Mosallaei, H. and Y. Rahmat-Samii, "Grand challenges in analyzing EM band-gap structures: An FDTD/Prony technique based on the split-field approach," Antennas and Propagation Society International Symposium, IEEE, 47-50, 2001.        Google Scholar

5. Farahat, N. and R. Mittra, "Analysis of frequency selective surfaces using the finite difference time domain (FDTD) method," Antennas and Propagation Society International Symposium, IEEE, 568-571, 2002.        Google Scholar

6. Amjadi, S. M. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
doi:10.2528/PIERB07122402        Google Scholar

7. Belkhir, A. and F. I. Baida, "Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome ," Phys. Rev. E, Vol. 77, No. 5, 056701, 2008.
doi:10.1103/PhysRevE.77.056701        Google Scholar

8. Oh, C. and M. J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: An efficient FDTD implementation," Opt. Express, Vol. 14, No. 24, 11870-11884, 2006.
doi:10.1364/OE.14.011870        Google Scholar

9. Baida, F. I. and A. Belkhir, "Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures," Opt. Lett., Vol. 34, No. 16, 2453-2455, 2009.
doi:10.1364/OL.34.002453        Google Scholar

10. Belkhir, A., O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, "Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence ," Phys. Rev. E, Vol. 81, 046705, 2010.
doi:10.1103/PhysRevE.81.046705        Google Scholar

11. Shahmansouri, A. and B. Rashidian, "Comprehensive three-dimensional split-field finite difference time-domain method for analysis of periodic plasmonic nanostructures: Near- and far-field formulation," J. Opt. Soc. Am. B, Vol. 28, No. 11, 2690-2700, 2011.
doi:10.1364/JOSAB.28.002690        Google Scholar

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference-Time-Domain Method, Artech House, 2005.

13. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026        Google Scholar

14. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method ," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075        Google Scholar

15. Wang, S., F. L. Teixeira, and J. Chen, "An iterative ADI-FDTD with reduced splitting error," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 2, 92-94, 2005.
doi:10.1109/LMWC.2004.842835        Google Scholar

16. Ahmed, I. and Z. Chen, "Error reduced ADI-FDTD methods," IEEE Antennas Wireless Propag. Lett., Vol. 4, 323-325, 2005.
doi:10.1109/LAWP.2005.855630        Google Scholar

17. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381        Google Scholar

18. Li, E., I. Ahmed, and R. Vahldieck, "Numerical dispersion analysis with an improved LOD-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 5, 319-321, 2007.
doi:10.1109/LMWC.2007.895687        Google Scholar

19. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-DMaxwel's equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, 2007.
doi:10.1109/LMWC.2006.890166        Google Scholar

20. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3596-3600, 2008.
doi:10.1109/TAP.2008.2005544        Google Scholar

21. Shibayama, J., A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, "A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices ," IEEE J. Quantum Electron., Vol. 46, No. 1, 40-49, 2010.
doi:10.1109/JQE.2009.2024328        Google Scholar

22. Yu, W., R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite-Difference Time-Domain Method, Artech House, 2006.

23. Schneider, R. N., L. E. Turner, and M. M. Okoniewski, "Application of FPGA technology to accelerate the finite difference time-domain (FDTD) method," FPGA'02 Proc. of the ACM/SIGDA Tenth Int. Symp. on Field-programmable Gate Arrays, ACM, 2002.        Google Scholar

24. Inman, M. J., A. Z. Elsherbeni, and C. E. Smith, "FDTD calculations using graphical processing units," IEEE/ACES Int. Conf. on Wireless Communications and Applied Computational Electromagnetics, 728-731, 2005.
doi:10.1109/WCACEM.2005.1469689        Google Scholar

25. Adams, S., J. Payne, and R. Boppana, "Finite difference time domain (FDTD) simulations using graphics processors," DOD High Performance Computing Modernization Program Users Group Conf., IEEE, 334-338, 2007.
doi:10.1109/HPCMP-UGC.2007.34        Google Scholar

26. Sypek, P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Trans. Magn., Vol. 45, No. 3, 1324-1327, 2009.
doi:10.1109/TMAG.2009.2012614        Google Scholar

27. Nagaoka, T. and S. Watanabe, "A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis," Engineering in Medicine and Biology Society on Annu. Int. Conf. of the IEEE, 327-330, 2010.

28. Zunoubi, M. R., J. Payne, and W. P. Roach, "CUDA implementation of TEz-FDTD solution of Maxwell's equations in dispersive media," IEEE Antennas Wireless Propag. Lett., Vol. 9, 756-759, 2010.
doi:10.1109/LAWP.2010.2060181        Google Scholar

29. Tay, W. C., D. Y. Heh, and E. L. Ta, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605        Google Scholar

30. Toivanen, J. I., T. P. Stefanski, N. Kuster, and N. Chavannes, "Comparison of CPML implementations for the GPU-accelerated FDTD solver," Progress In Electromagnetics Research M, Vol. 19, 61-75, 2011.
doi:10.2528/PIERM11061002        Google Scholar

31. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.        Google Scholar

32. Ma, L. C. and R. Mittra, "Parallel implementation of the periodic boundary condition (PBC) in the FDTD for the investigation of spatial filters," Antennas and Propagation Society International Symposium, IEEE, 1-4, 2008.        Google Scholar

33. Mao, Y., B. Chen, B. Zhou, L. Cheng, and Q. Wu, "Parallel implementation of the split-field FDTD method for the analysis of periodic structure," 8’th International Symp. Antennas, Propagation and EM Theory, IEEE, 875-878, 2008.        Google Scholar

34. Roden, J. A., J. P. Skinner, and S. L. Johns, "Shielding effectiveness of three dimensional gratings using the periodic FDTD technique and CPML absorbing boundary condition," IEEE/ACES Int. Conf. on Wireless Communications and Applied Computational Electromagnetics, 128-131, 2005.
doi:10.1109/WCACEM.2005.1469545        Google Scholar

35. http://www.nvidia.com.

36. NVIDIA CUDA C Programming Guide, Version 3.2, NVIDIA, 2010.

37. Vial, A., A. Grimault, D. Mac´ıas, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method ," Phys. Rev. B, Vol. 71, No. 8, 085416, 2005.
doi:10.1103/PhysRevB.71.085416        Google Scholar

38. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon, 1980.

39. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

40. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, 1983.

41. Lee, K. S. and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B, Vol. 110, No. 39, 19220-19225, 2006.
doi:10.1021/jp062536y        Google Scholar

42. Larsson, E. M., C. Langhammer, I. Zoric, and B. Kasemo, "Nanoplasmonic probes of catalytic reactions," Science, Vol. 326, 1091-1094, 2009.
doi:10.1126/science.1176593        Google Scholar

43. Bera, M. and M. Ray, "Precise detection and signature of biological/chemical samples based on surface plasmon resonance (SPR)," J. Opt., Vol. 38, No. 4, 232-248, 2009.
doi:10.1007/s12596-009-0021-x        Google Scholar

44. Shankaran, D. R., K. V. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sensors and Actuators B, Vol. 121, 158-177, 2007.
doi:10.1016/j.snb.2006.09.014        Google Scholar

45. Ankerm, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonicnanosensors," Nature Materials, Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162        Google Scholar

46. Bingham, J. M., J. N. Anker, L. E. Kreno, and R. P. Van Duyne, "Gas sensing with high-resolution localized surface plasmon resonance spectroscopy," J. Am. Chem. Soc., Vol. 132, 17358-17359, 2010.
doi:10.1021/ja1074272        Google Scholar

47. Nau, D., A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, "Hydrogen sensor based on metallic photonic crystal slabs," Opt. Lett., Vol. 35, No. 18, 3150-3152, 2010.
doi:10.1364/OL.35.003150        Google Scholar

48. Homola, J., Surface Plasmon Resonance Based Sensors, Springer, Berlin, 2006.

49. Charles, D. E., M. Gara, D. Aherne, D. M. Ledwith, J. M. Kelly, W. J. Blau, and M. E. Brennan-Fournet, "Scaling of surface plasmon resonances in triangular silver nanoplate sols for enhanced refractive index sensing," Plasmonics, Vol. 6, 351-362, 2011.
doi:10.1007/s11468-011-9211-x        Google Scholar

50. Steinbrück, A., O. Stranik, A. Csaki, and W. Fritzsche, "Sensoric potential of gold-silver core-shell nanoparticles," Anal. Bioanal. Chem., Vol. 401, 1241-1249, 2011.
doi:10.1007/s00216-011-5177-y        Google Scholar

51. Svedendahl, M., S. Chen, A. Dmitriev, and M. Käll, "Refractometric sensing using propagating versus localized surface plasmons: A direct comparison," Nano Lett., Vol. 9, No. 12, 4428-4433, 2009.
doi:10.1021/nl902721z        Google Scholar

52. Rodríguez-Cantó, P. J., M. Martínez-Marco, F. J. Rodríguez-Fortuño, B. Tomás-Navarro, R. Ortuño, S. Peransí-Llopis, and A. Martínez, "Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon," Opt. Express, Vol. 19, No. 8, 7664-7672, 2011.
doi:10.1364/OE.19.007664        Google Scholar

53. Sosnova, M. V., N. L. Dmitruk, A. V. Korovin, S. V. Mamykin, V. I. Mynko, and O. S. Lytvyn, "Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications," Appl. Phys. B, Vol. 99, 493-497, 2010.
doi:10.1007/s00340-009-3799-y        Google Scholar

54. Ameling, R., L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, "Cavity-enhanced localized plasmon resonance sensing," Appl. Phys. Lett., Vol. 97, 253116, 2010.
doi:10.1063/1.3530795        Google Scholar

55. Ye, J. and P. Van Dorpe, "Improvement of figure of merit for gold nanobar array plasmonic sensors," Plasmonics, Vol. 6, 665-671, 2011.
doi:10.1007/s11468-011-9249-9        Google Scholar

56. Jiang, H., J. Markowski, and J. Sabarinathan, "Near-infrared optical response of thin film pH-sensitive hydrogel coated on a gold nanocrescent array," Opt. Express, Vol. 17, No. 24, 21802-21807, 2009.
doi:10.1364/OE.17.021802        Google Scholar

57. Rodríguez-Fortuño, F. J., M. Martínez-Marco, B. Tomás-Navarro, R. Ortuño, J. Martí, A. Martínez, and P. J. Rodríguez-Cantó, "Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses," Appl. Phys. Lett., Vol. 98, 133118, 2011.
doi:10.1063/1.3558916        Google Scholar

58. Kubo, W. and S. Fujikawa, "Au double nanopillars with nanogap for plasmonic sensor," Nano Lett., Vol. 11, 8-15, 2011.
doi:10.1021/nl100787b        Google Scholar

59. Lamprecht, B., G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett., Vol. 84, No. 20, 4721-4724, 2000.
doi:10.1103/PhysRevLett.84.4721        Google Scholar

60. Zou, S. and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys., Vol. 121, No. 24, 2004.
doi:10.1063/1.1826036        Google Scholar

61. Chu, Y., E. Schonbrun, T. Yang, and K. B. Crozier, "Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays," Appl. Phys. Lett., Vol. 93, 181108, 2008.
doi:10.1063/1.3012365        Google Scholar

62. Offermans, P., M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, "Universal scaling of the figure of merit of plasmonic sensors," ACS Nano, Vol. 5, No. 6, 5151-5157, 2011.
doi:10.1021/nn201227b        Google Scholar

63. Kravets, V. G., F. Schedin, A. V. Kabashin, and A. N. Grigorenko, "Sensitivity of collective plasmon modes of gold nanoresonators to local environment," Opt. Lett., Vol. 35, No. 7, 956-958, 2010.
doi:10.1364/OL.35.000956        Google Scholar