Vol. 126

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-03-17

Developing Lspr Design Guidelines

By Daryoush Mortazavi, Abbas Z. Kouzani, Akif Kaynak, and Wei Duan
Progress In Electromagnetics Research, Vol. 126, 203-235, 2012
doi:10.2528/PIER12011810

Abstract

Applications of localized surface plasmon resonance (LSPR) such as surface enhanced Raman scattering (SERS) devices, biosensors, and nano-optics are growing. Investigating and understanding of the parameters that affect the LSPR spectrum is important for the design and fabrication of LSPR devices. This paper studies different parameters, including geometrical structures and light attributes, which affect the LSPR spectrum properties such as plasmon wavelength and enhancement factor. The paper also proposes a number of rules that should be considered in the design and fabrication of LSPR devices.

Citation


Daryoush Mortazavi, Abbas Z. Kouzani, Akif Kaynak, and Wei Duan, "Developing Lspr Design Guidelines," Progress In Electromagnetics Research, Vol. 126, 203-235, 2012.
doi:10.2528/PIER12011810
http://www.jpier.org/PIER/pier.php?paper=12011810

References


    1. Mortazavi, D., A. Z. Kouzani, and A. Kaynak, "Nano-plasmonic biosensors --- A review," International Conference on Complex Medical Engineering, Harbin, 2011.

    2. Fleischmanna, M., P. J. Hendraa, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrod," Chemical Physics Letters, Vol. 26, No. 2, 163-166, 1974.
    doi:10.1016/0009-2614(74)85388-1

    3. Stuart, D. A., C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. van Duyne, "Glucose sensing using near-infrared surface-enhanced Raman spectroscopy Gold surfaces, 10-day stability, and improved accuracy," Analytical Chemistry, Vol. 77, 4013-4019, 2005.
    doi:10.1021/ac0501238

    4. Willets, K. A. and R. P. van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," The Annual Review of Physical Chemistry, Vol. 58, 267-297, 2007.
    doi:10.1146/annurev.physchem.58.032806.104607

    5. Riboh, J. C., A. J. Haes, A. D. McFarland, C. R. Yonzon, and R. P. van Duyne, "A nanoscale optical biosensor real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion," J. Physical Chemistry B, Vol. 107, 1772-1780, 2003.
    doi:10.1021/jp022130v

    6. Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Physical Review B, Vol. 72, 155412-155426, 2005.
    doi:10.1103/PhysRevB.72.155412

    7. Mishchenko, M. I., L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications , Academic Press, 2000.

    8. Anker, J. N., W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. van Duyne, "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, 442-453, 2008.
    doi:10.1038/nmat2162

    9. Davis, T. J., K. C. Vernon, and D. E. Gómez, "Designing plasmonic systems using optical coupling between nanoparticles," Physical Review B, Vol. 79, 155423-155432, 2009.
    doi:10.1103/PhysRevB.79.155423

    10. Haynes, C. L., A. D. McFarland, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy," Analytical Chemistry, 339-346, Sep. 1, 2005.

    11. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water," Surface Science, Vol. 601, 2656-2659, 2007.
    doi:10.1016/j.susc.2006.11.079

    12. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111) Dependence of water reactivity as a function of Na coverage," J. of Chemical Physics, Vol. 126, 244712, 2007.
    doi:10.1063/1.2748385

    13. Slaughter, L., W.-S. Chang, and S. Link, "Characterizing plasmons in nanoparticles and their assemblies with single particle spectroscopy ," J. of Physical Chemistry Letters, Vol. 2, 2015-2023, 2011.
    doi:10.1021/jz200702m

    14. Angulo, A. M., C. Noguez, and G. C. Schatz, "Electromagnetic field enhancement for wedge-shaped metal nanostructures," J. of Physical Chemistry Letters, Vol. 2, 1978-1983, 2011.
    doi:10.1021/jz200825g

    15. Schatz, G. C. and R. P. van Duyne, Electromagnetic Mechanism of Surface-enhanced Spectroscopy, John Wiley & Sons Ltd., Chichester, 2002.

    16. Whitney, A. V., J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. van Duyne, "Localized surface plasmon resonance nanosensor a high-resolution distance-dependence study using atomic layer deposition," J. Physical Chemistry B, Vol. 109, No. 43, 20522-20528, 2005.
    doi:10.1021/jp0540656

    17. Kennedy, B. J., S. Spaeth, M. Dickey, and K. T. Carron, "Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols," J. Physical Chemistry B, Vol. 103, 3640-3646, 1999.
    doi:10.1021/jp984454i

    18. Stiles, P. L., J. A. Dieringer, N. C. Shah, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy," The Annual Review of Analytical Chemistry, Vol. 1, 601-626, 2008.
    doi:10.1146/annurev.anchem.1.031207.112814

    19. Wang, D. S. and M. Kerker, "Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids," Physical Review B, Vol. 24, 1777-1790, 1981.
    doi:10.1103/PhysRevB.24.1777

    20. Kerker, M., D. S. Wang, and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles," Applied Optics, Vol. 19, No. 19, 3373-3388, 1980.
    doi:10.1364/AO.19.003373

    21. Payne, E. K., K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, "Multipole plasmon resonances in gold nanorods," J. Physical Chemistry B, Vol. 110, 2150-2154, 2006.
    doi:10.1021/jp056606x

    22. Zhang, S., K. Bao, N. J. Halas, H. Xu, and P. Nordlander, "Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed," Nano Letters, Vol. 11, 1657-1663, 2011.
    doi:10.1021/nl200135r

    23. Link, S. and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Physical Chemistry B, Vol. 103, 8410-8426, 1999.
    doi:10.1021/jp9917648

    24. Sekhon, J. S. and S. S. Verma, "Rational selection of nanorod plasmons Material, size, and shape dependence mechanism for optical sensors ," Plasmonics, Jan. 7, 2012.

    25. Prangsma, J. C., Local and Dynamic Properties of Light Interacting with Subwavelength Holes, Amsterdam, Twente, 2009.

    26. Yang, Z., Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, "FDTD for plasmonics: Applications in enhanced Raman spectroscopy," Chinese Sceince Bulletin, Vol. 55, No. 24, 2635-2642, 2010.
    doi:10.1007/s11434-010-4044-0

    27. Dhawan, A., S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, "Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers," Optics Express, Vol. 17, No. 12, 9688-9703, 2009.
    doi:10.1364/OE.17.009688

    28. Zeman, E. J. and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium," J. Physical Chemistry, Vol. 91, No. 3, 634-643, 1987.
    doi:10.1021/j100287a028

    29. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles The influence of size, shape, and dielectric environment," J. Physical Chemistry B, Vol. 107, 668-677, 2003.
    doi:10.1021/jp026731y

    30. Zhou, X., M. Zhang, L. Yi, and Y. Fu, "Investigation of resonance modulation of a single rhombic plasmonic nanoparticle," Plasmonics, Vol. 6, 91-98, 2011.
    doi:10.1007/s11468-010-9173-4

    31. Dmitriev, A., C. H?gglund, S. Chen, H. Fredriksson, T. Pakizeh, M. K?ll, and D. S. Sutherland, "Enhanced nanoplasmonic optical sensors with reduced substrate effect," Nano Letters, Vol. 8, No. 11, 3893-3898, 2008.
    doi:10.1021/nl8023142

    32. Xu, H. and M. K?ll, "Modeling the optical response of nanoparticle-based surface plasmon resonance sensors," Sensors and Actuators B, Vol. 87, 244-249, 2002.
    doi:10.1016/S0925-4005(02)00243-5

    33. Brandl, D. W., C. Oubre, and P. Nordlander, "Plasmon hybridization in nanoshell dimers," J. of Chemical Physics, Vol. 123, 024701-024711, 2005.
    doi:10.1063/1.1949169

    34. Prodan, E. and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. of Chemical Physics, Vol. 120, No. 11, 5444-5454, 2004.
    doi:10.1063/1.1647518

    35. Xu, H. and M. K?ll, "Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates," ChemPhysChem, Vol. 4, No. 9, 1001-1005, 2003.
    doi:10.1002/cphc.200200544

    36. Brown, R. J. C., J. Wang, and M. J. T. Milton, "Electromagnetic modelling of Raman enhancement from nanoscale structures as a means to predict the e±cacy of SERS substrates ," J. of Nanomaterials, Vol. 12086, 1-10, 2007.
    doi:10.1155/2007/12086

    37. Xu, H., J. Aizpurua, M. K?ll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering ," Physiacal Review E, Vol. 62, No. 3, 4318-4324, 2000.
    doi:10.1103/PhysRevE.62.4318

    38. Gunnarsson, L., E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. K?ll, "Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering," Applied Physics Letters, Vol. 78, No. 6, 802-804, 2000.
    doi:10.1063/1.1344225

    39. De Garcia, A. F. J. and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Physical Review Letters, Vol. 77, No. 6, 1163-1166, 1996.
    doi:10.1103/PhysRevLett.77.1163

    40. Brown, R. J. C., J. Wang, R. Tantra, Y. Re, and M. J. T. Milton, "Electromagnetic modelling of Raman enhancement from nanoscale substrates a route to estimation of the magnitude of the chemical enhancement mechanism in SERS ," Faraday Discussions, Vol. 132, 201-213, 2006.
    doi:10.1039/b506751k

    41. Schatz, G. C., M. A. Young, and R. P. van Duyne, Electromagnetic Mechanism of SERS, 19-45, Springer-Verlag, Berlin, Heidelberg, 2006.

    42. Brandl, D. W., N. A. Mirin, and P. Nordlander, "Plasmon modes of nanosphere trimers and quadrumers," J. Physical Chemistry B, Vol. 110, 12302-12310, 2006.
    doi:10.1021/jp0613485

    43. Shegai, T., Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, "Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer," PNAS, Vol. 105, No. 43, 16448-16453, 2008.
    doi:10.1073/pnas.0808365105

    44. Baer, R., D. Neuhauser, and S. Weiss, "Enhanced absorption induced by a metallic nanoshell," Nano Letters, Vol. 4, No. 1, 85-88, 2004.
    doi:10.1021/nl034902k

    45. Wang, H., D. W. Brandl, P. Nordlander, and N. J. Halas, "Plasmonic nanostructures artificial molecules," Accounts of Chemical Research, Vol. 40, No. 1, 53-62, 2007.
    doi:10.1021/ar0401045

    46. Brandl, D. W. and P. Nordlander, "Plasmon modes of curvilinear metallic core-shell particles," J. of Chemical Physics, Vol. 126, 144708-144718, 2007.
    doi:10.1063/1.2717167

    47. Oubre, C. and P. Nordlander, "Optical properties of metallodi-electric nanostructures calculated using the finite difference time domain method," J. Physical Chemistry B, Vol. 108, 17740-17747, 2004.
    doi:10.1021/jp0473164

    48. Radloff, C. and N. J. Halas, "Plasmonic properties of concentric nanoshells," Nano Letters, Vol. 4, No. 7, 1323-1327, 2004.
    doi:10.1021/nl049597x

    49. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, No. 17, 419-424, 2003.
    doi:10.1126/science.1089171

    50. Xu, H., "Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field," Physical Review B, Vol. 72, No. 073405, 1-4, 2005.

    51. Le, F., N. Z. Lwin, J. M. Steele, M. Ka, N. J. Halas, and P. Nordlander, "Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Letters, Vol. 10, No. 5, 2009-2013, 2005.
    doi:10.1021/nl0515100

    52. Nordlander, P. and P. Le, "Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system," Applied Physics B, Vol. 84, 35-41, 2006.
    doi:10.1007/s00340-006-2203-4

    53. Le, F., N. Z. Lwin, N. J. Halas, and P. Nordlander, "Plasmonic interactions between a metallic nanoshell and a thin metallic film," Physical Review B, Vol. 76, No. 165410, 1-12, 2007.

    54. Richards, D., R. G. Milner, F. Huang, and F. Festy, "Tip-enhanced Raman microscopy practicalities and limitations," J. of Raman Spectroscopy, Vol. 34, 663-667, 2003.
    doi:10.1002/jrs.1046

    55. Hao, F., C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Letters, Vol. 7, No. 3, 729-732, 2007.
    doi:10.1021/nl062969c

    56. Willingham, B., D. W. Brandl, and P. Nordlander, "Plasmon hybridization in nanorod dimers," Applied Physics B, Vol. 93, 209-216, 2008.
    doi:10.1007/s00340-008-3157-5

    57. Voshchinnikov, N. V. and V. G. Farafonov, "Optical properties of spheroidal particles," Astrophysics and Space Science, Vol. 204, No. 1, 19-85, 1993.
    doi:10.1007/BF00658095

    58. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and A. F. J. de Garcia, "Optical properties of gold nanorings," Physical Review B, Vol. 90, No. 5, 0574011-0574014, 2003.

    59. Mayergoyz, I. D. and Z. Zhang, "Modeling of the electrostatic (plasmon) resonances in metallic and semiconductor nanoparticles," J. of Computational Electronics, Vol. 4, 139-143, 2005.
    doi:10.1007/s10825-005-7125-6

    60. Mayergoyz, I. D. and Z. Zhang, "The computation of extinction cross sections of resonant metallic nanoparticles subject to optical radiation," IEEE Trans. on Magnetics, Vol. 43, No. 4, 1681-1684, 2007.
    doi:10.1109/TMAG.2007.892500

    61. Vernon, K. C., A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, "Influence of particle-substrate interaction on localized plasmon resonances," Nano Letters, Vol. 10, 2080-2086, 2010.
    doi:10.1021/nl100423z

    62. Zhang, Z. Y. and Y. P. Zhaoa, "Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation," Applied Physics Letters, Vol. 89, 023110-023112, 2006.
    doi:10.1063/1.2221403

    63. Hao, E., S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical properties of metal nanoshells," J. Physical Chemistry B, Vol. 108, 1224-1229, 2004.
    doi:10.1021/jp036301n

    64. Byun, K. M., D. Kimb, and S. J. Kima, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sensors and Actuators B, Vol. 117, 401-407, 2006.
    doi:10.1016/j.snb.2005.11.038

    65. Xu, H., E. J. Bjerneld, M. K?ll, and L. B?rjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Physical Review Letters, Vol. 21, No. 83, 4357-4360, 1999.
    doi:10.1103/PhysRevLett.83.4357

    66. Zhang, Z. Y. and Y. P. Zhaoa, "Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method," Applied Physics Letters, Vol. 90, 221501-221503, 2007.
    doi:10.1063/1.2743938

    67. Dutta, C. M., T. A. Ali, D. W. Brandl, T. H. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. of Chemical Physics, Vol. 129, 084706-084714, 2008.
    doi:10.1063/1.2971192

    68. Yang, Z., J. Aizpurua, and H. Xu, "Electromagnetic field enhancement in TERS configurations," Journal of Raman Spectroscopy, Vol. 40, No. 10, 1343-1348, 2009.
    doi:10.1002/jrs.2429