PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 127 > pp. 553-569

A MODIFIED TAGUCHI'S OPTIMIZATION ALGORITHM FOR BEAMFORMING APPLICATIONS

By Z. D. Zaharis

Full Article PDF (253 KB)

Abstract:
The present paper is a study of adaptive beamforming (ABF) techniques applied to antenna arrays. The structure of these techniques is based on Taguchi's Optimization (TagO) method. The high convergence speed and the ability to reach near-optimal solutions by adjusting only one parameter make the Taguchi's method an attractive choice for real time implementations like the case of ABF. Modifications are proposed in order to enhance the applicability of the TagO algorithm and decrease the computational time needed by the algorithm to terminate. The TagO method is used here to construct an ABF technique that aims at steering the main lobe of a uniform linear array towards a signal of interest, under the constraint of low side lobe level (SLL) or the constraint of placing radiation pattern nulls towards respective interference signals. Properly defined fitness functions must be minimized by the TagO algorithm to satisfy respectively the above mentioned constraints. The TagO-based ABF technique is compared with typical beamforming methods, like the Sample Matrix Inversion (SMI) and Maximum Likelihood (ML) ones, and with two evolutionary ABF techniques based on Particle Swarm Optimization (PSO) and Differential Evolution (DE), respectively. The comparison is performed regarding the convergence speed, the ability to achieve better fitness values in less time, the ability to properly steer the main lobe and finally the null-steering ability or the SLL control depending on the constraint type. The results exhibit the superiority of the TagO-based technique.

Citation:
Z. D. Zaharis, "A modified taguchi's optimization algorithm for beamforming applications," Progress In Electromagnetics Research, Vol. 127, 553-569, 2012.
doi:10.2528/PIER12040108
http://www.jpier.org/pier/pier.php?paper=12040108

References:
1. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "A real-time approach to array control based on a learned genetic algorithm," Microwave and Optical Technology Letters, Vol. 36, 235-238, 2003.
doi:10.1002/mop.10731

2. Donelli, M., A. Lommi, A. Massa, and C. Sacchi, "Assessment of the GA-based adaptive array control strategy: The case of stochastic life-time co-channel interferences," Microwave and Optical Technology Letters, Vol. 37, 198-201, 2003.
doi:10.1002/mop.10867

3. Sacchi, C., F. De Natale, M. Donelli, A. Lommi, and A. Massa, "Adaptive antenna array control in the presence of interfering signals with stochastic arrivals: Assessment of a GA-based procedure," IEEE Transactions on Wireless Communications, Vol. 3, No. 4, 1031-1036, Jul.2004.
doi:10.1109/TWC.2004.830845

4. Donelli, M., R. Azaro, F. G. B. De Natale, and A. Massa, "An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 3, 888-898, Mar.2006.
doi:10.1109/TAP.2006.869912

5. Benedetti, M., R. Azaro, D. Franceschini, and A. Massa, "PSO-based real-time control of planar uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 545-548, Dec.2006.
doi:10.1109/LAWP.2006.887553

6. Benedetti, M., R. Azaro, and A. Massa, "Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 1939-1947, Jul.2008.
doi:10.1109/TAP.2008.924717

7. Benedetti, M., R. Azaro, and A. Massa, "Experimental validation of a fully-adaptive smart antenna prototype," Electronics Letters, Vol. 44, No. 11, 661-662, 2008.
doi:10.1049/el:20083689

8. Benedetti, M., G. Oliveri, P. Rocca, and A. Massa, "A fully-adaptive smart antenna prototype: Ideal model and experimental validation in complex interference scenarios," Progress In Electromagnetics Research, Vol. 96, 173-191, 2009.
doi:10.2528/PIER09080904

9. Viani, F.L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri,A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227

10. Umrani, A. W., Y. Guan, and F. A. Umrani, "Effect of steering error vector and angular power distributions on beamforming and transmit diversity systems in correlated fading channel," Progress In Electromagnetics Research, Vol. 105, 383-402, 2010.
doi:10.2528/PIER10042902

11. Poli, L., P. Rocca, G. Oliveri, and A. Massa, "Adaptive nulling in time-modulated linear arrays with minimum power losses," IET Microwaves, Antennas & Propagation, Vol. 5, No. 2, 157-166, 2011.
doi:10.1049/iet-map.2010.0015

12. Lee, J.-H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the newton method to improve the accuracy of toa estimation with the beamforming algorithm and the music algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.

13. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

14. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
doi:10.2528/PIER11052205

15. Mallipeddi, R., J. P. Lie, P. N. Suganthan, and S. G. Razul C. M. S. See, "Near optimal robust adaptive beamforming approach based on evolutionary algorithm," Progress In Electromagnetics Research B, Vol. 29, 157-174, 2011.
doi:10.2528/PIERB10110810

16. Lee, J.-H., G.-W. Jung, and W.-C. Tsai, "Antenna array beamforming in the presence of spatial information uncertainties," Progress In Electromagnetics Research B, Vol. 31, 139-156, 2011.

17. Lee, J.-H. and Robust antenna array beamforming under cycle frequency mismatch, Progress In Electromagnetics Research B, Vol. 35, 307-328, 2011.
doi:10.2528/PIERB11082207

18. Jabbar, A. N., "A novel ultra-fast ultra-simple adaptive blind beamforming algorithm for smart antenna arrays," Progress In Electromagnetics Research B, Vol. 35, 329-348, 2011.
doi:10.2528/PIERB11091504

19. Mallipeddi, R., J. P. Lie, S. G. Razul, and P. N. Suganthan C. M. S. See, "Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch," Progress In Electromagnetics Research Letters, Vol. 25, 37-46, 2011.

20. Gross, F. B., Smart Antennas for Wireless Communications with Matlab, McGraw-Hill, New York, 2005.

21. Weng, W. C., F. Yang, and A. Elsherbini, Electromagnetics and Antenna Optimization Using Taguchi's Method, Morgan & Claypool, San Rafael, CA, 2007.

22. Weng, W. C. and C. Choi, "Optimal design of CPW slot antennas using Taguchi's method," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1542-1545, Mar.2009.
doi:10.1109/TMAG.2009.2012737

23. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of Taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306

24. Sheng, N., C. Liao, W. Lin, L. Chang, Q. Zhang, and H. Zhou, "A hybrid optimized algorithm based on EGO and Taguchi's method for solving expensive evaluation problems of antenna design," Progress In Electromagnetics Research C, Vol. 17, 181-192, 2010.
doi:10.2528/PIERC10091303

25. Nemri, N., A. Smida, R. Ghayoula, and H. Trabelsi A. Gharsallah, "Phase-only array beam control using a Taguchi optimization method," 11th Mediterranean Microwave Symposium (MMS), 97-100, Sept.2011.
doi:10.1109/MMS.2011.6068537

26. Eberhart, R. C. and Y. Shi, "Particle swarm optimization:Developments, applications and resources," Proceedings of the Congress on Evolutionary Computation, Vol. 1, 81-86, 2011.

27. Lizzi, L. and G. Oliveri, "Hybrid design of a fractal-shaped GSM/UMTS antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 707-719, 2010.
doi:10.1163/156939310791036386

28. Wang, J., B. Yang, S. H. Wu, and J. S. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1985-1998, 2011.
doi:10.1163/156939311798071965

29. Wang, W.-B., Q. Feng, and D. Liu, "Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 115, 173-189, 2011.

30. Li, W.-T., Y.-Q. Hei, and X.-W. Shi, "Pattern synthesis of conformal arrays by a modified particle swarm optimization," Progress In Electromagnetics Research, Vol. 117, 237-252, 2011.

31. Liu, D., Q. Feng, W.-B.Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502

32. Goudos, S. K., K. Siakavara, E. Vafiadis, and J. N. Sahalos, "Pareto optimal yagi-uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302

33. Goudos, S. K., Z. D. Zaharis, and T. V. Yioultsis, "Application of a differential evolution algorithm with strategy adaptation to the design of multi-band microwave filters for wireless communications," Progress In Electromagnetics Research, Vol. 109, 123-137, 2010.
doi:10.2528/PIER10081704

34. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

35. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with subarray divided technique and interpolated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

36. Park, G. M., H. G. Lee, and S. Y. Hong, "DOA resolution enhancement of coherent signals via spatial averaging of virtually expanded arrays," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 61-70, 2010.
doi:10.1163/156939310790322127

37. Lui, H. S. and H. T. Hui, "Effective mutual coupling compensation for direction-of-arrival estimations using a new, accurate determination method for the receiving mutual impedance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 271-281, 2010.
doi:10.1163/156939310790735598

38. Li, R., L. Xu, X. -W. Shi, L. Chen, and C. -Y. Cui, "Two-dimensional NC-Music DOA estimation algorithm with a conformal cylindrical antenna array," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 805-818, 2011.
doi:10.1163/156939311794827249

39. Liang, J. and D. Liu, "Two l-shaped array-based 2-d DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

40. Kim, Y. and H. Ling, "Direction of arrival estimation of humans with a small sensor array using an artificial neural network," Progress In Electromagnetics Research B, Vol. 27, 127-149, 2011.


© Copyright 2014 EMW Publishing. All Rights Reserved