PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 128 > pp. 479-502

BISTATIC FMCW SAR RAW SIGNAL SIMULATOR FOR EXTENDED SCENES

By Y. Liu, Y.-K. Deng, R. Wang, and X. Jia

Full Article PDF (826 KB)

Abstract:
By mounting the transmitter and receiver of Frequency Modulated Continuous Wave (FMCW) Synthetic Aperture Radar (SAR) system on separate platforms, bistatic FMCW SAR offers more considerable capabilities, reliability and flexibility while maintaining the small size, low cost and agile reaction. The bistatic FMCW SAR raw signal simulator is highly required to quantitatively support the design of bistatic FMCW SAR, to help mission planning, test processing algorithms, and analyze jamming and noises. Bistatic FMCW SAR raw signal can be exactly simulated target-by-target in time domain but with extremely time and memory consuming, especially when extended scenes are considered. In this paper, bistatic FMCW SAR signal model and Bistatic Point Target Reference Spectrum (BPTRS) is proposed, based on which a raw signal simulator is developed in the 2-D frequency domain for the first time, where Chirp-Z Transform (CZT) is used to formulate the range migration terms. By taking advantage of Fast Fourier Transform (FFT), the proposed raw signal simulator highly reduces the computational load with respect to the time domain approach. The simulated raw data is verified by analyzing the corresponding images focused by Range Doppler Algorithm (RDA).

Citation:
Y. Liu, Y.-K. Deng, R. Wang, and X. Jia, "Bistatic FMCW SAR raw signal simulator for extended scenes," Progress In Electromagnetics Research, Vol. 128, 479-502, 2012.
doi:10.2528/PIER12041604
http://www.jpier.org/PIER/pier.php?paper=12041604

References:
1. Meta, A., P. Hoogeboom, and L. P. Ligthart, "Signal processing for FMCW SAR," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, Nov. 2007.

2. Lim, S. H., J. H. Han, S.-Y. Kim, and N.-H. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagnetics Research, Vol. 106, 295-309, 2010.
doi:10.2528/PIER10061901

3. Liu, Q., W. Hong, W. X. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503

4. Wei, X., P. Huang, and Y. K. Deng, "Multi-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

5. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201

6. Park, J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

7. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

8. Essen, H., H. H. Fuchs, and A. Pagels, "High resolution millimeterwave SAR for remote sensing of wave patterns," Proc. GRASS, 963-966, Barcelona, Spanish, Jun. 2004.

9. Edrich, M., "Design overview and flight test results of the miniaturized SAR sensor MISAR," Proc. 1st EURAD, 205-208, Amsterdam, The Netherlands, Oct. 2004.

10. Weib, M. and J. H. G. Ender, "A 3D imaging radar for small unmanned airplanes--ARTINO," Proc. EURAD, 209-212, Paris,France, Oct. 2005.

11. Ahmed, N., "Monostatic CW SAR concept for microsatellites," EUSAR, 1545-1554, Aachen, Germany, Jun. 2010.

12. Curlander, J. C. and R. N. Mcdonough, Sythetic Aperture Radar:Systems and Signal Processing, John Wiley & Sons, New York, 1991.

13. Krieger, G. and A. Moreira, "Spaceborne bi- and multistatic SAR: Potential and challenges," IEE Proc. Radar Sonar Navig., Vol. 153, No. 3, 184-198, Jun. 2006.
doi:10.1049/ip-rsn:20045111

14. Wu, J. J., J. Y. Yang, Y. L. Huang, Z. Liu, and H. G. Yang, "A new look at the point target reference spectrum for bistatic SAR," Progress In Electromagnetics Research, Vol. 119, 363-379, 2011.
doi:10.2528/PIER11050704

15. Sun, J. P., S. Y. Mao, G. H. Wang, and W. Hong, "Extended exact transfer function algorithm for bistatic SAR of translational in variant case," Progress In Electromagnetics Research, Vol. 99, 89-108, 2009.
doi:10.2528/PIER09091203

16. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703

17. Ji, W. J. and C. M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

18. Nies, H., O. Loffeld, and K. Natroshvili, "Analysis and focusing of bistatic airborne SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3342-3349, Nov. 2007.
doi:10.1109/TGRS.2007.900689

19. Crocco, L., F. Soldovieri, T. Millington, and N. J. Cass, "Bistatic tomographic GPR imaging for incipient pipeline leakage evaluation," Progress In Electromagnetics Research, Vol. 101, 307-321, 2010.
doi:10.2528/PIER09122206

20. Qi, Y. L., W. X. Tan, Y. P. Wang, W. Hong, and Y. R. Wu, "3D bistatic OMEGA-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry," Progress In Electromagnetics Research, Vol. 121, 409-431, 2011.
doi:10.2528/PIER11090205

21. Li, S., H. P. Xu, and L. Q. Zhang, "An advanced DSS-SAR InSAR terrain height estimation approach based on baseline decoupling," Progress In Electromagnetics Research, Vol. 119, 207-224, 2011.
doi:10.2528/PIER11042301

22. Wang, R., O. Loffeld, Y. L. Neo, H. Nies, and Z. Dai, "Extending Loffeld's bistatic formula for the general bistatic SAR configuration," IET Radar Sonar Navig., Vol. 4, 74-84, 2010.
doi:10.1049/iet-rsn.2009.0099

23. Neo, Y. L., F. Wong, and I. G. Cumming, "A two-dimensional spectrum for bistatic SAR processing using series reversion," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 1, 93-96, Jan. 2007.
doi:10.1109/LGRS.2006.885862

24. Wang, R., O. Loffeld, H. Nies, S. Knedlik, and J. H. G. Ender, "Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 3, 1296-1299, Mar. 2009.
doi:10.1109/TGRS.2008.2006275

25. Franceschetti, G., A. Iodice, S. Perna, and D. Riccio, "Effcient simulation of airborne SAR raw data of extended scenes," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2851-2860, Oct. 2006.
doi:10.1109/TGRS.2006.875786

26. Franceschetti, G., A. Iodice, S. Perna, and D. Riccio, "SAR sensor trajectory deviations: Fourier domain formulation and extended scene simulation of raw signal," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 9, 2323-2334, Sep. 2006.
doi:10.1109/TGRS.2006.873206

27. Jin, Y.-Q., "Polarimetric scattering modeling and information retrieval of SAR remote sensing -- A review of FDU work," Progress In Electromagnetics Research, Vol. 104, 333-384, 2010.
doi:10.2528/PIER10020101

28. Buddendick, H. and T. F. Eibert, "Bistatic image formation from shooting and bouncing rays simulated current distributions," Progress In Electromagnetics Research, Vol. 119, 1-18, 2011.
doi:10.2528/PIER11060212

29. Franceschetti, G., R. Guida, A. Iodice, D. Riccio, G. Ruello, and U. Stilla, "Simulation tools for interpretation of high resolution SAR images of urban areas," Proc. Urban Remote Sens. Joint Event, 1-5, 2007.
doi:10.1109/URS.2007.371841

30. Chang, Y. L., C. Y. Chiang, and K. S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

31. Zhang, M., Y. W. Zhao, H. Chen, and W. Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

32. Zhao, Y. W., M. Zhang, and H. Chen, "An effcient ocean SAR raw signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

33. Wang, Y., Z. Zhang, and Y. Deng, "Squint spotlight SAR raw signal simulation in the frequency domain using optical principles," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 8, 2208-2215, Aug. 2008.
doi:10.1109/TGRS.2008.917496

34. Rabiner, L. R., R. W. Schafer, and C. M. Rader, "The chirp-Z transform and its applications," IEEE Trans. Audio. Electro., Vol. 17, No. 2, 86-92, Jun. 1969.
doi:10.1109/TAU.1969.1162034

35. Lanari, R., "A new method for the compensation of the SAR range cell migration based on the chirp Z-transform," IEEE Trans. Geosci. Remote Sens., Vol. 33, No. 5, 1296-1299, Sep. 1995.
doi:10.1109/36.469496

36. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation, Artech House, Norwood, MA, 2005.


© Copyright 2014 EMW Publishing. All Rights Reserved