PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 129 > pp. 485-515

FIELD APPROACH IN THE TRANSFORMATION OPTICS CONCEPT

By A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko

Full Article PDF (1,699 KB)

Abstract:
An alternative, field-based formulation of transformation optics is proposed. Field transformations are expressed in the language of boundary conditions for the electromagnetic fields facilitated through the introduction of generalized potential functions. It is shown that the field-based approach is equivalent to the conventional coordinate-transformation approach but is preferable when looking for specific field distribution. A set of example devices such as invisibility cloaks, concentrators, rotators, and transformation optics lenses capable of creating light beams with predetermined field distribution (e.g., Gaussian and sinusoidal) is studied to validate the effectiveness of the field-based formulation. As for the boundary conditions for the cloaked region the absence of the normal component of the Poynting vector is justified. In the frames of the field-based approach the physical reasons behind infinite components (singularities) of the material parameters of transformation optics devices are straightforwardly revealed.

Citation:
A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, "Field Approach in the Transformation Optics Concept," Progress In Electromagnetics Research, Vol. 129, 485-515, 2012.
doi:10.2528/PIER12050902
http://www.jpier.org/PIER/pier.php?paper=12050902

References:
1. Dolin, L., "About the possibility of three-dimensional electromagnetic systems with inhomogeneous anisotropic filling," Izvestiya Vuzov: Radiophysics, Vol. 4, 964-967, 1961.

2. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," J. Mod. Opt., Vol. 43, 773-793, 1996.
doi:10.1080/09500349608232782

3. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1783, 2006.
doi:10.1126/science.1125907

4. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

6. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3

7. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, Mineola, 2010.

8. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621

9. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, 9794-9804, 2006.
doi:10.1364/OE.14.009794

10. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photonics, Vol. 3, 461-463, 2009.
doi:10.1038/nphoton.2009.117

11. Qiu, C.-W., L. Hu, B. Zhang, B.-I. Wu, S. G. Johnson, and J. D. Joannopoulos, "Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings," Opt. Express, Vol. 17, 13467-13478, 2009.
doi:10.1364/OE.17.013467

12. Kwon, D. and D. H. Werner, "Two-dimensional eccentric elliptic electromagnetic cloaks," Appl. Phys. Lett., Vol. 92, 013505, 2008.
doi:10.1063/1.2830698

13. Yan, M., W. Yan, and M. Qiu, "Invisibility cloaking by coordinate transformation," Prog. Opt., Vol. 52, 261-304, 2009.
doi:10.1016/S0079-6638(08)00006-1

14. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

15. Kildishev, A. V., W. Cai, U. K. Chettiar, and V. M. Shalaev, "Transformation optics: Approaching broadband electromagnetic cloaking," New J. Phys., Vol. 10, 115029, 2008.
doi:10.1088/1367-2630/10/11/115029

16. Kildishev, A. V. and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett., Vol. 33, 43-45, 2008.
doi:10.1364/OL.33.000043

17. Nicolet, A., F. Zolla, and S. Guenneau, "Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section," Opt. Lett., Vol. 33, 1584-1586, 2008.
doi:10.1364/OL.33.001584

18. Greanleaf, A., Y. Kurilev, M. Lassas, and G. Uhlmann, "Invisibility and inverse problems," Bulletin of the Americam Mathematical Society, Vol. 46, 55-97, 2009.
doi:10.1090/S0273-0979-08-01232-9

19. Luo, Y., H. Chen, J. Zhang, L. Ran, and J. A. Kong, "Design and analytical fullwave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Phys. Rev. B, Vol. 77, 125127, 2008.
doi:10.1103/PhysRevB.77.125127

20. Zharova, N. A., I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, "Ideal and nonideal invisibility cloaks," Opt. Express, Vol. 16, 21369-21374, 2008.
doi:10.1364/OE.16.021369

21. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461

22. Urzhumov, Y. A. and D. R. Smith, "Transformation optics with photonic band gap media," Phys. Rev. Lett., Vol. 105, 163901, 2010.
doi:10.1103/PhysRevLett.105.163901

23. Han, T., C. Qiu, and X. Tang, "An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation," J. Opt., Vol. 12, 095103, 2010.
doi:10.1088/2040-8978/12/9/095103

24. Tuniz, A., B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, "Weaving the invisible thread: Design of an optically invisible metamaterial fibre," Opt. Express, Vol. 18, 18095-18105, 2010.
doi:10.1364/OE.18.018095

25. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photon. Nanostruct.: Fundam. Applic., Vol. 6, 87, 2008.
doi:10.1016/j.photonics.2007.07.013

26. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
doi:10.1063/1.2748302

27. Lai, Y., H. Chen, Z.-Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, 093901, 2009.
doi:10.1103/PhysRevLett.102.093901

28. Lai, Y., J. Ng, H. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, "Illusion optics: The optical transformation of an object into another object," Phys. Rev. Lett., Vol. 102, 253902, 2009.
doi:10.1103/PhysRevLett.102.253902

29. Li, C., X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, "Experimental realization of a circuit-based broadband illusionoptics analogue," Phys. Rev. Lett., Vol. 105, 233906, 2010.
doi:10.1103/PhysRevLett.105.233906

30. Schultheiss, V. H., S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tunnermann, S. Longhi, and U. Peschel, "Optics in curved space," Phys. Rev. Lett., Vol. 105, 143901, 2010.
doi:10.1103/PhysRevLett.105.143901

31. Luo, Y., L.-X. He, Y. Wang, H. L. W. Chan, and S.-Z. Zhu, "Changing the scattering of sheltered targets," Phys. Rev. A, Vol. 83, 043809, 2011.
doi:10.1103/PhysRevA.83.043809

32. Han, T., C.-W. Qiu, and X. Tang, "Distributed external cloak without embedded antiobjects," Opt. Lett., Vol. 35, 2642-2644, 2010.
doi:10.1364/OL.35.002642

33. Jiang, W. X., T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, "Cylindrical-to-plane-wave conversion via embedded optical transformation," Appl. Phys. Lett., Vol. 92, 261903, 2008.
doi:10.1063/1.2953447

34. Ward, A. J. and J. B. Pendry, "Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method," Phys. Rev. B, Vol. 58, 7252-7259, 1998.
doi:10.1103/PhysRevB.58.7252

35. Shyroki, D. M., "Note on transformation to general curvilinear coordinates for Maxwell's curl equations," , 2003, Preprint, arXiv:physics/0307029v2 .
doi:10.1109/LMWC.2006.884768

36. Shyroki, D. M., "Squeezing of open boundaries by Maxwell-consistent real coordinate transformation," IEEE Microwave and Wireless Components Letters, Vol. 16, 576-578, 2006.
doi:10.1109/TMTT.2007.897841

37. Shyroki, D. M., "Efficient Cartesian-grid-based modeling of rotationally symmetric bodies," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1132-1138, 2007.
doi:10.1109/TMTT.2007.914637

38. Shyroki, D. M., "Exact equivalent straight waveguide model for bent and twisted waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 414-419, 2008.
doi:10.1088/1367-2630/10/11/115033

39. Smolyaninov, I. I., "Transformational optics of plasmonic metamaterials," New J. Phys., Vol. 10, 115033, 2008.
doi:10.1021/nl100800c

40. Huidobro, P. A., M. L. Nesterov, L. Martin-Moreno, and F. J. Garca-Vidal, "Transformation optics for plasmonics," Nano Lett., Vol. 10, 1985-1890, 2010.
doi: --- Either ISSN or Journal title must be supplied.

41. Liu, Y., T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmonics," Nano Lett., Vol. 10, 1991-1997, 2010.
doi:10.1364/OE.18.012027

42. Kadic, M., S. Guenneau, and S. Enoch, "Transformational plasmonics: Cloak, concentrator and rotator," Opt. Express, Vol. 18, 12027-12032, 2010.
doi:10.1103/PhysRevLett.105.233901

43. Aubry, A., D. Y. Lei, S. A. Maier, and J. B. Pendry, "Interaction between plasmonic nanoparticles revisited with transformation optics," Phys. Rev. Lett., Vol. 105, 233901, 2010.
doi:10.1088/1367-2630/9/3/045

44. Cummer, S. A. and D. Schurig, "One path to acoustic cloaking," New J. Phys., Vol. 9, 45, 2007.
doi:10.1088/0022-3727/43/11/113001

45. Chen, H. and C. T. Chan, "Acoustic cloaking and transformation acoustics," J. Phys. D, Vol. 43, 113001, 2010.
doi:10.1103/PhysRevLett.101.134501

46. Farhat, M., S. Enoch, S. Guenneau, and A. B. Movchan, "Broadband cylindrical acoustic cloak for linear surface waves in a fluid," Phys. Rev. Lett., Vol. 101, 134501, 2008.
doi:10.1103/PhysRevLett.106.253901

47. Popa, B.-I., L. Zigoneanu, and S. A. Cummer, "Experimental acoustic ground cloak in air," Phys. Rev. Lett., Vol. 106, 253901, 2011.
doi:10.1063/1.3068749

48. Alitalo, P., F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, "Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks," Appl. Phys. Lett., Vol. 94, 014103, 2009.
doi:10.1103/PhysRevLett.103.103905

49. Tretyakov, S., P. Alitalo, O. Luukkonen, and C. Simovski, "Broadband electromagnetic cloaking of long cylindrical objects," Phys. Rev. Lett., Vol. 103, 103905, 2009.
doi:10.1126/science.1166949

50. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.

51. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun., Vol. 1, 21, 2010.
doi:10.1038/ncomms1176

52. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nat. Commun., Vol. 2, 176, 2011.
doi:10.1103/PhysRevLett.106.033901

53. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisible cloak for visible light," Phys. Rev. Lett., Vol. 106, 033901, 2011.
doi:10.1103/PhysRevLett.102.213901

54. Smolyaninov, I. I., V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, "Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking," Phys. Rev. Lett., Vol. 102, 213901, 2009.
doi:10.1126/science.1186351

55. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337, 2010.
doi:10.1364/OL.36.002059

56. Fischer, J., T. Ergin, and M. Wegener, "Three-dimensional polarization-independent visible-frequency carpet invisibility cloak," Opt. Lett., Vol. 36, 2059-2061, 2011.
doi:10.1088/1464-4258/11/1/015104

57. Collins, P. and J. McGuirk, "A novel methodology for deriving improved material parameter sets for simplified cylindrical cloaks," J. Opt. A: Pure Appl., Vol. 11, 015104, 2009.
doi:10.1063/1.3026532

58. Jiang, W. X., T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, "Invisibility cloak without singularity," Appl. Phys. Lett., Vol. 93, 194102, 2008.
doi:10.1063/1.3168652

59. Hu, J., X. Zhou, and G. Hu, "Nonsingular two dimensional cloak of arbitrary shape," Appl. Phys. Lett., Vol. 95, 011107, 2009.
doi:10.1103/PhysRevLett.99.233901

60. Yan, M., Z. Chao, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Phys. Rev. Lett., Vol. 99, 233901, 2007.
doi:10.1103/PhysRevLett.101.203901

61. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1364/JOSAB.28.000922

62. Huang, L., D. Zhou, J. Wang, Z. Li, X. Chen, and W. Lu, "Generalized transformation for nonmagnetic invisibility cloak with minimized scattering," J. Opt. Soc. Am. B, Vol. 28, 922-928, 2011.
doi:10.1364/OE.18.013038

63. Han, T. and C.-W. Qiu, "Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks," Opt. Express, Vol. 18, 13038-13043, 2010.
doi:10.1103/PhysRevLett.99.063903

64. Chen, Chen, B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1088/1367-2630/11/11/113001

65. Novitsky, A., C.-W. Qiu, and S. Zouhdi, "Transformation-based spherical cloaks designed by an implicit transformation-independent method: Theory and optimization," New J. Phys., Vol. 11, 113001, 2009.
doi:10.1103/PhysRevE.80.016604

66. Qiu, C.-W., A. Novitsky, H. Ma, and S. Qu, "Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks," Phys. Rev. E, Vol. 80, 016604, 2009.
doi:10.1103/PhysRevE.72.016623

67. Alu, A. and N. Engheta, "Achiving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
doi:10.1088/1367-2630/14/1/013054

68. Rainwater, D., A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, "Experimental verification of three-dimensional plasmonic cloaking in free-space," New J. Phys., Vol. 14, 013054, 2012.
doi:10.1103/PhysRevLett.102.233901

69. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, 2009.
doi:10.1088/1367-2630/10/11/115028

70. Tretyakov, S. A., I. S. Nefedov, and P. Alitalo, "Generalized field-transforming metamaterials," New J. Phys., Vol. 10, 115028, 2008.
doi:10.1088/1367-2630/10/11/115022

71. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022, 2008.
doi:10.1088/2040-8978/13/3/035104

72. Novitsky, A. V., "Inverse problem in transformation optics," J. Opt., Vol. 13, 035104, 2011.
doi:10.1103/PhysRevLett.58.1499

73. Durnin, J., J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, 1499-1504, 1987.
doi:10.1103/PhysRevLett.99.213901

74. Siviloglou, G. A., J. Broky, A. Dogariu, and D. N. Christodoulides, "Observation of accelerating Airy beams," Phys. Rev. Lett., Vol. 99, 213901, 2007.
doi:10.1088/2040-8978/13/2/024003

75. McCall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," J. Opt., Vol. 13, 024003, 2011.
doi:10.1088/2040-8978/13/2/024007

76. Cummer, S. A. and R. T. Thompson, "Frequency conversion by exploiting time in transformation optics," J. Opt., Vol. 13, 024007, 2011.
doi:10.1038/nature10695

77. Fridman, M., A. Farsi, Y. Okawachi, and A. L. Gaeta, "Demonstration of temporal cloaking," Nature, Vol. 481, 62-65, 2012.
doi:10.1364/JOSAB.28.001082

78. , , , http://www.comsol.com/.
doi:10.1088/2040-8978/13/7/075103

79. Zang, Zang and C. Jiang, "A rotatable and amplifying optical transformation device," J. Opt. Soc. Am. B, Vol. 28, 1082-1087, 2011.

80. Perczel, J., C. Garcia-Meca, and U. Leonhardt, "Partial transmutation of singularities in optical instruments," J. Opt., Vol. 13, 075103, 2011.

81. Fedorov, F. I., Optics of Anisotropic Media, Izdatelstvo AN BSSR, Minsk, 1958.

82. Fedorov, F. I., Theory of Gyrotropy, Nauka i Tehnika, Minsk, 1976.

83. Fedorov, F. I. and V. V. Filippov, Reflection and Transmission of Light by Transparent Crystals, Nauka i Tehnika, Minsk, 1976.

84. Fedorov, F. I., Theory of Elastic Waves in Crystals, Plenum Press, New York, 1968.

85. Fedorov, F. I., Lorentz Group, Nauka, Moscow, 1979.
doi:10.1103/PhysRevD.5.787

86. Fedorov, F. I., "To the theory of total reflection," Doklady Akademii Nauk SSSR, Vol. 105, 465-469, 1955.
doi:10.1103/PhysRevLett.93.083901

87. Imbert, C., "Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam," Phys. Rev. D, Vol. 5, 787-796, 1972.

88. Onoda, M., S. Murakami, and N. Nagaosa, "Hall effect of light," Phys. Rev. Lett., Vol. 93, 083901, 2004.

89. Serdyukov, A. N., I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.
doi: --- Either ISSN or Journal title must be supplied.

90. Post, E. J., Formal Structure of Electromagnetics, Noth-Holland Publishing Company, Amsterdam, 1962.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.


© Copyright 2014 EMW Publishing. All Rights Reserved