Vol. 130
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-20
A Novel Compact Split Ring Slotted Electromagnetic Bandgap Structure for Microstrip Patch Antenna Performance Enhancement
By
Progress In Electromagnetics Research, Vol. 130, 389-409, 2012
Abstract
A novel design of an electromagnetic bandgap (EBG) structure based on the uniplanar compact EBG (UCEBG) concept is proposed in this paper. The structure is realized by inserting split-ring slots inside two reversely connected rectangular patches, which is known as a split-ring slotted electromagnetic bandgap (SRS-EBG) structure. The bandgap properties of the EBG structure are examined by the suspended microstrip line and finite element methods (FEM). The achieved bandgaps have widths of 4.3 (59.31%) and 5.16 GHz (38.88%), which are centered at 7 and 13 GHz, respectively. The SRS-EBG is applied to enhance the performance of a single-element microstrip patch antenna (at 7 GHz) and a two-element array (at 13 GHz) configuration. A wider bandwidth is obtained with a better reflection coefficient level for the single element antenna; a reduction in mutual coupling of more than 20.57 dB is obtained for the array design. In both cases, the gain and radiation characteristics are improved. The results are verified by measuring the fabricated lab prototype, and a comparison with the computed results showed good agreement.
Citation
Md. Shahidul Alam, Mohammad Tariqul Islam, and Norbahiah Misran, "A Novel Compact Split Ring Slotted Electromagnetic Bandgap Structure for Microstrip Patch Antenna Performance Enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.
doi:10.2528/PIER12060702
References

1. Liao, W.-J., S.-H. Chang, and L.-K. Li, "A compact planar multiband antenna for integrated mobile devices," Progress In Electromagnetics Research, Vol. 109, 1-16, 2010.
doi:10.2528/PIER10083001

2. Mu, X., W. Jiang, S.-X. Gong, and F.-W. Wang, "Dual-band low profile directional antenna with high impedance surface reflector," Progress In Electromagnetics Research Letters, Vol. 25, 67-75, 2011.

3. Xie, H.-H., Y.-C. Jiao, K. Song, and B. Yang, "Miniature electromagnetic band-gap structure using spiral ground plane," Progress In Electromagnetics Research Letters, Vol. 17, 163-170, 2010.
doi:10.2528/PIERL10081203

4. Tiang, J.-J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011.

5. Habib, M. A., A. Bostani, A. Djaiz, M. Nedil, M. C. E. Yagoub, and T. A. Denidni, "Ultra wideband CPW-FED aperture antenna with WLAN band rejection," Progress In Electromagnetics Research, Vol. 106, 17-31, 2010.
doi:10.2528/PIER10011905

6. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline ," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

7. Abedin, M. F. and M. Ali, "Effects of a smaller unit cell planar EBG structure on the mutual coupling of a printed dipole array," IEEE Antennas and Wireless Propagation Letter, Vol. 4, 274-276, 2005.
doi:10.1109/LAWP.2005.854004

8. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

9. Capet, N., C. Martel, J. Sokoloff, and O. Pascal, "Optimum high impedance surface configuration for mutual coupling reduction in small antenna arrays," Progress In Electromagnetics Research B, Vol. 32, 283-297, 2011.
doi:10.2528/PIERB11050506

10. Yang, F. and Y. Rahmat-Samii, "Electromagnetic Band-Gap Structures in Antenna Engineering," The Cambridge RF and Microwave Engineering Series, Cambridge University Press, Cambridge, Mass, USA, 2008 .

11. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706

12. Maagt, P. D., R. Gonzalo, Y. C. Vardaxoglou, and J. M. Baracco, "Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2667-2777, 2003.
doi:10.1109/TAP.2003.817566

13. Dai, X., Y. Xiang, and S. Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

14. Elsheakh, D. M. N., H. A. Elsadek, E. A.-F. Abdallah, H. M. El-Henawy, and M. F. Iskander, "Ultra-wide bandwidth microstrip monopole antenna by using electromagnetic band-gap structures," Progress In Electromagnetics Research Letters, Vol. 23, 109-118, 2011.

15. Xu, F., Z.-X. Wang, X. Chen, and X.-A. Wang, "Dual band-notched UWB antenna based on spiral electromagnetic-bandgap structure," Progress In Electromagnetics Research B, Vol. 39, 393-409, 2012.
doi:10.2528/PIERB12021607

16. Lin, M.-S., C.-H. Huang, and C.-N. Chiu, "Use of high-impedance screens for enhancing antenna performance with electromagnetic compatibility," Progress In Electromagnetics Research, Vol. 116, 137-157, 2011.

17. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

18. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

19. Elsheakh, D. M. N., H. A. Elsadek, E. A.-F. Abdallah, M. F. Iskander, and H. M. El-Henawy, "Investigated new embedded shapes of electromagnetic bandgap structures and via e®ect for improved microstrip patch antenna performance," Progress In Electromagnetics Research B, Vol. 20, 91-107, 2010.
doi:10.2528/PIERB09122004

20. Liang, J. and H. Y. D. Yang, "Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1691-1697, 2007.
doi:10.1109/TAP.2007.898633

21. Li, Y., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 183-190, 2005.

22. Zheng, Q.-R., B. Q. Lin, Y. Q. Fu, and N. C. Yuan, "Characteristics and applications of a novel compact spiral electromagnetic band-gap (EBG) structure ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 199-213, 2007.
doi:10.1163/156939307779378844

23. Coccioli, R., F. R. Yang, K. P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Tech., Vol. 47, No. 11, 2123-2130, 1999.
doi:10.1109/22.798008

24. Tomeo-Reyes, I. and E. Rajo-Iglesias, "Comparative study on different HIS as ground planes and its application to low profile wire antennas design ," Progress In Electromagnetics Research, Vol. 115, 55-77, 2011.

25. Liu, J., W.-Y. Yin, and S. He, "A new defected ground structure and its application for miniaturized switchable antenna," Progress In Electromagnetics Research, Vol. 107, 115-128, 2010.
doi:10.2528/PIER10050904

26. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

27. Abedin, M. F., M. Z. Azad, and M. Ali, "Wideband smaller unit-cell planar EBG structures and their application," IEEE Antennas Wireless Propagation Letter, Vol. 56, 274-276, 2008.

28. Gonzalo, R., I. Ederra, C. Mann, and P. de Maagt, "Radiation properties of terahertz dipole antenna mounted on photonic crystal," Electronics Letters, Vol. 37, No. 10, 613-614, 2001.
doi:10.1049/el:20010435

29. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications ," IEEE Transactions on Antennas Propag., Vol. 51, 2939-2949, 2003.

30. Yamamoto, M., T. Koyanagi, and T. Nojima, "Leaf-shaped bowtie antenna backed by a periodic patch-loaded grounded slab," IEEE International Symposium on Antennas and Propagation (APSURSI) , 622-625, 2011.
doi:10.1109/APS.2011.5996788

31. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Computational investigation and design of planar EBG structures for coupling reduction in antenna applications ," IEEE Transactions on Magnetics, Vol. 48, No. 2, 771-774, 2012.
doi:10.1109/TMAG.2011.2172680

32. Fan, M. Y., R. Hu, Z. H. Feng, X. X. Zhang, and Q. Hao, "Advance in 2D-EBG research," Journal of Infrared Millimeter Waves, Vol. 22, No. 2, 2003.

33. Yin, X., H. Zhang, X.-Y. Huang, and H.-Y. Xu, "Spurious modes reduction in a patch antenna using an EBG-based microstrip transmission line filter," Progress In Electromagnetics Research C, Vol. 25, 41-54, 2012.
doi:10.2528/PIERC11082401