PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 131 > pp. 227-241

AN ALTERNATIVE RANGE MIGRATION CORRECTION ALGORITHM FOR FOCUSING MOVING TARGETS

By D. M. Kirkland

Full Article PDF (346 KB)

Abstract:
This paper presents a method for focusing a moving target in single channel SAR data utilizing a novel technique for range migration correction. The First Order Keystone transform is first applied to remove the range-walk of the moving target signature. A search procedure based on maximizing a contrast cost function is then employed to determine the phase correction which compensates for the remaining range curvature. Finally an adaptive notch filter is used to construct an estimate of the azimuth compression filter necessary to focus the moving target. An experimental result is provided for airborne SAR data to demonstrate the performance of the approach.

Citation:
D. M. Kirkland, "An Alternative Range Migration Correction Algorithm for Focusing Moving Targets," Progress In Electromagnetics Research, Vol. 131, 227-241, 2012.
doi:10.2528/PIER12060711
http://www.jpier.org/PIER/pier.php?paper=12060711

References:
1. Raney, R. K., "Synthetic aperture imaging radar and moving targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 3, 499-505, May 1971.
doi:10.1109/TAES.1971.310292

2. Fienup, J., "Detecting moving targets in SAR imagery by focusing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 3, 794-808, Jul. 2001.
doi:10.1109/7.953237

3. Sharma, J. J., C. H. Gierull, and M. J. Collins, "The influence of target acceleration on velocity estimation in dual-channel SARGMTI," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 1, 134-147, Jan. 2006.
doi:10.1109/TGRS.2005.859343

4. Mao, X., D.-Y. Zhu, and Z.-D. Zhu, "Signatures of moving targets in polar format spotlight SAR image," Progress In Electromagnetics Research, Vol. 92, 47-64, 2009.
doi:10.2528/PIER09030908

5. Barbarossa, S. and A. Farina, "Detection and imaging of moving objects with synthetic aperture radar --- Part 2: Joint time frequency analysis by Wigner-Ville distribution," IEE Proceedings --- F, Vol. 139, No. 1, 89-97, Feb. 1992.
doi:10.1049/ip-f-2.1992.0011

6. Perry, R., R. DiPietro, and R. Fante, "SAR imaging of moving targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 1, 188-200, Jan. 1999.
doi:10.1109/7.745691

7. Zhou, F., R. Wu, and Z. Bao, "Approach for single channel SAR ground moving target imaging and motion parameter estimation," IET Radar, Sonar, and Navigation, Vol. 1, No. 1, 59-66, Feb. 2007.
doi:10.1049/iet-rsn:20060040

8. Li, G., X.-G. Xia, and Y.-N. Peng, "Doppler keystone transform for SAR imaging of moving targets," Congress on Image and Signal Processing, 716-719, May 2008.
doi:10.1109/CISP.2008.600

9. Kirkland, D., "Imaging moving targets using the second-order keystone transform," IET Radar Sonar and Navigation, Vol. 5, No. 8, 902-910, Oct. 2011.

10. Zhou, F., Y. Li, R. Ru, M. Xing, and Z. Bao, "An effective approach to ground moving target imaging for single channel SAR system," International Conference on Radar, 1-4, Oct. 2006.

11. Barbarossa, S. and A. Farina, "A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville distribution," Record of the IEEE 1990 International Radar Conference, 44-50, May 1990.
doi:10.1109/RADAR.1990.201135

12. Barbarossa, S. and A. Scaglione, "Autofocusing of SAR images based on the product high-order ambiguity function," IEE Proceedings Radar, Sonar, and Navigation, Vol. 145, No. 5, 269-273, Oct. 1998.
doi:10.1049/ip-rsn:19982222

13. Cohen, L., "Time-frequency distributions --- A review," Proceedings of the IEEE, Vol. 77, No. 7, 941-981, Jul. 1989.
doi:10.1109/5.30749

14. Rao, B. D. and R. Peng, "Tracking characteristics of the constrained IIR adaptive notch filter," IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 36, No. 9, 1466-1479, Sep. 1988.
doi:10.1109/29.90375

15. Regalia, P., Adaptive IIR Filtering in Signal Processing and Control, 1st Ed., Marcel Dekker, Inc., Sep. 1994.

16. Händel, P. and A. Nehorai, "Tracking analysis of an adaptive notch filter with constrained poles and zeros," IEEE Transactions on Signal Processing, Vol. 42, No. 2, 281-291, Feb. 1994.
doi:10.1109/78.275602

17. Nehorai, A., "A minimal parameter adaptive notch filter with constrained poles and zeros," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 33, No. 4, 983-996, Aug. 1985.
doi:10.1109/TASSP.1985.1164643

18. Pei, S.-C. and C.-C. Tseng, "Complex adaptive IIR notch filter algorithm and its applications," IEEE Transactions on Circuits and Systems --- II: Analog and Digital Signal Processing, Vol. 41, No. 2, 158-163, Feb. 1994.
doi:10.1109/82.281849

19. Damini, A., M. McDonald, and G. Haslam, "X-band wideband experimental airborne radar for SAR, GMTI and maritime surveillance," IEE Proceedings Radar, Sonar and Navigation, Vol. 150, No. 4, 305-312, Aug. 2003.
doi:10.1049/ip-rsn:20030654

20. Damini, A., M. Balaji, L. Shafai, and G. Haslam, "Novel multiple phase centre reflector antenna for GMTI radar," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 151, No. 3, 199-204, Jun. 2004.
doi:10.1049/ip-map:20040339

21. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar Systems and Signal Processing, 1st Ed., John Wiley & Sons, Inc., 1991.


© Copyright 2014 EMW Publishing. All Rights Reserved