PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 133 > pp. 443-458

DESIGN AND 3-D PARTICLE-IN-CELL SIMULATION OF A 140 GHz SPATIAL-HARMONIC MAGNETRON

By N. Nasr Esfahani, M. Tayarani, and K. Schunemann

Full Article PDF (1,524 KB)

Abstract:
Design and 3-D numerical simulation of a 140 GHz spatialharmonic magnetron (SHM) are presented. The effect of geometrical parameters of the side resonators of the anode block on the output power are considered using the results of a theory based on a single harmonic approximation approach. This theory enables the determination of the optimum geometrical parameters of the side resonators. SHM design evaluation is carried out via numerical simulations performed with a 3-D particle-in-cell (PIC) code embedded in CST-Particle Studio. Simulations of the SHM are performed without artificial RF priming and without assuming restrictive assumptions on the mode of operation or on the number of harmonics to be considered. Thus in our simulations the electromagnetic oscillations grow naturally from noise. The results of time evolved electron flow simulations and gradual formation of a single frequency RF oscillation are presented. The presented SHM shows stable operation in the π /2-1-mode at 140 GHz over a range of DC anode voltages extending from 11.3 kV to 11.5 kV and for an axial magnetic flux density equal to 0.79 T. RF Output power of the SHM varies from 2 kW to 11 kW over these voltages with a maximum efficiency of around 6.8%.

Citation:
N. Nasr Esfahani, M. Tayarani, and K. Schunemann, "Design and 3-D Particle-in-Cell Simulation of a 140 GHz Spatial-Harmonic Magnetron," Progress In Electromagnetics Research, Vol. 133, 443-458, 2013.
doi:10.2528/PIER12081310
http://www.jpier.org/PIER/pier.php?paper=12081310

References:
1. Booske, J., R. Dobbs, C. Joy, C. Kory, G. Neil, G. Park, J. Park, and R. Temkin, "Vaccum electronic high power terahertz sources," IEEE Trans. Terahertz Sci. Tech., Vol. 1, No. 1, 54-75, 2011.
doi:10.1109/TTHZ.2011.2151610

2. Heh, D. Y. and E. L. Tan, "Modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma using the unconditionally stable fundamental adi-FDTD method," Progress In Electromagnetics Research B, Vol. 37, 365-386, 2012.
doi:10.2528/PIERB11090905

3. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 12, 93-103, 2012.
doi:10.2528/PIER11101401

4. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902

5. Zhang, Y.-X., S. Qiao, T. Zhao, W. Ling, and S. Liu, "Planar symmetric normal and complementary three-resonance resonators in terahertz band," Progress In Electromagnetics Research, Vol. 125, 21-35, 2012.
doi:10.2528/PIER11122110

6. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605

7. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304

8. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

9. Andres-Garcia, B., L. E. Garcia-Munoz, D. Segovia-Vargas, I. Camara-Mayorga, and R. Gusten, "Ultrawideband antenna excited by a photomixer for terahertz band," Progress In Electromagnetics Research, Vol. 114, 1-15, 2011.

10. Zhou, Y. and S. Lucyszyn, "Modelling of reconfigurable terahertz integrated architecture (Retina) SIW structures," Progress In Electromagnetics Research, Vol. 105, 71-92, 2010.
doi:10.2528/PIER10041806

11. Laurette, S., A. Treizebre, N.-E. Bourzgui, and B. Bocquet, "Terahertz interferometer for integrated Goubau-line waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 49-58, 2012.
doi:10.2528/PIERL11121205

12. Diao, J., F. Yang, L. Du, J. Ou Yang, and P. Yang, "Enhancing terahertz radiation from dipole photoconductive antenna by blending tips," Progress In Electromagnetics Research Letters, Vol. 25, 127-134, 2011.

13. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
doi:10.2528/PIERL10070105

14. Diao, J. M., F. Yang, Z.-P. Nie, J. Ou Yang, and P. Yang, "Separated fractal antennas for improved emission performance of terahertz radiations," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1158-1167, 2012.
doi:10.1080/09205071.2012.710562

15. Diao, J. M., L. Du, J. Ou Yang, P. Yang, and Z.-P. Nie, "Enhanced center frequency of terahertz pulse emission from photoconductive antenna," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2236-2243, 2011.
doi:10.1163/156939311798147006

16. Gao, Z. and Z.-Y. Wang, "Terahertz plasmonic cross resonant optical antenna," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1730-1739, 2011.
doi:10.1163/156939311797164954

17. Zhang, X. F., L. F. Shen, J.-J. Wu, and T.-J. Yang, "Backward guiding of terahertz radiation in periodic dielectric waveguides," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 557-564, 2010.

18. Chen, D. and H. Chen, "Highly birefringent low-loss terahertz waveguide: Elliptical polymer tube," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1553-1562, 2010.
doi:10.1163/156939310792149623

19. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a gaas membrane covered by a frequency selective surface for a terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012.

20. Ding, S., B.-F. Jia, F.-X. Li, and Z.-J. Zhu, "3D Simulation of 18-vane 5.8 GHz Magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1925-1930, 2008.
doi:10.1163/156939308787537946

21. Ashutosh, B., R. Chandra, and P. K. Jain, "Multimode behavior of a 42 GHz, 200kW gyrotron," Progress In Electromagnetics Research B, Vol. 42, 75-91, 2012.

22. Singh, U., N. Kumar, S. Tandon, H. Khatun, L. P. Purohit, and A. K. Sinha, "Numerical simulation of magnetron injection gun for 1mw 120 GHz gyrotron," Progress In Electromagnetics Research Letters, Vol. 16, 21-34, 2010.
doi:10.2528/PIERL10031503

23. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100 kw cw gyrotron for plasma diagnostics: Gds-v.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
doi:10.2528/PIERB10061508

24. Kumar, N., U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha, "Design of 35 GHz gyrotron for material processing applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011.

25. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for application in Gyro-TWT (part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
doi:10.2528/PIER10071305

26. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in Gyro-TWT (part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
doi:10.2528/PIER10071505

27. Hou, Y., J. Xu, H.-R. Yin, Y.-Y. Wei, L.-N. Yue, G. Zhao, and Y.-B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012.

28. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, and Y.-B. Gong, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906

29. Seshadri, R., S. K. Ghosh, A. Bhansiwal, S. Kamath, and P. K. Jain, "A simple analysis of helical slow-wave structure loaded by dielectric embedded metal segments for wideband traveling-wave tubes," Progress In Electromagnetics Research B, Vol. 20, 303-320, 2010.
doi:10.2528/PIERB10031201

30. Zheng, R., P. Ohlckers, and X. Chen, "Particle-in-cell simulation and optimization for a 220 GHz folded waveguide traveling wave tube," IEEE Trans. Electron Devices, Vol. 58, No. 7, 2164-2171, 2011.
doi:10.1109/TED.2011.2145420

31. Gensheimer, P. D., C. K. Walker, R. W. Ziolkowski, and C. D. Aubigny, "Full-scale three-dimensional simulations of a folded-waveguide traveling-wave tube using ICEPIC," IEEE Trans. Terahertz Sci. Tech., Vol. 2, No. 3, 222-230, 2011.

32. Gong, Y., H. Yin, L. Yue, Z. Lu, Y. Wei, J. Feng, Z. Duan, and X. Xu, "A 140 GHz two beam over moded folded-waveguide traveling-wave tube," IEEE Trans. Terahertz Sci. Tech., Vol. 39, No. 3, 847-851, 2011.

33. Mineo, M. and C. Paoloni, "Corrugated rectangular waveguide tunable backward wave oscillator for THz applications," IEEE Trans. Plasma Sci., Vol. 57, No. 5, 1481-1484, 2010.

34. Xu, X., Y.Wei, F. Shen, Z. Duan, Y. Gong, H. Yin, and W.Wang, "Sine waveguide for 0.22 THz traveling wave tube," IEEE Electron Device Letters, Vol. 32, No. 8, 1152-1153, 2011.
doi:10.1109/LED.2011.2158060

35. Xu, X., Y. Wei, F. Shen, Z. Duan, Y. Gong, H. Yin, and W. Wang, "140 GHz V-shaped microstrip meander-line traveling wave tube," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 8, 1152-1153, 2011.

36. Zhang, M. H, Y.-Y. Wei, G. Guo, L. -N. Yue, Y. Hou, S. M. Wang, J. Xu, Y.-B. Gong, and W.-X. Wang, "A novel 140-GHz sheet-beam folded-waveguide traveling-wave tube," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 1-9, 2012.

37. Naumenko, V. D., K. Schunemann, and D. M. Vavriv, "Miniature 1 kW, 95 GHz magnetrons," Electronics Letters, Vol. 35, No. 22, 1960-1961, 1998.
doi:10.1049/el:19991337

38. Naumenko, V. D., A. Suvorov, and A. Sirov, "Tunable magnetron of a two-millimeter-wavelength band," Microwave and Optical Technology Letters, Vol. 12, No. 3, 129-131, 1996.
doi:10.1002/(SICI)1098-2760(19960620)12:3<129::AID-MOP3>3.0.CO;2-J

39. Collins, G. B., Microwave Magnetrons, McGrow-Hill, New York, 1948.

40. Schunemann, K., A. E. Serebryannikov, S. V. Sosnytskiy, and D. M. Vavriv, "Optimizing the spatial-harmonic millimeter-wave magnetron," Physics of Plasmas, Vol. 10, No. 6, 2559-2565, 2003.
doi:10.1063/1.1565337

41. Yu, S., G. Kooyers, and O. Bunemann, "Time dependent computer analysis of electron-wave interaction in crossed fields," Journal of Appl. Phys., Vol. 36, No. 8, 2550-2559, 1965.
doi:10.1063/1.1714528

42. Schunemann, K., S. V. Sosnytskiy, and D. M. Vavriv, "Self-consistent simulation of the spatial-harmonic magnetron with cold secondary-emission cathode," IEEE Trans. Electron Devices, Vol. 48, No. 5, 993-998, 2001.
doi:10.1109/16.918248

43. Andreev, A. D. and K. J. Hendricks, "ICEPIC simulation of a strapped nonrelativistic high-power CW UHF magnetron with a solid cathode operating in the space-charge limited regime ," IEEE Trans. Plasma Sci., Vol. 40, No. 6, 1551-1562, 2012.
doi:10.1109/TPS.2011.2177997

44. Fleming, T. P., M. Lambrecht, and P. Mardahl, "Design and simulation of a Mega-watt class non relativistic magnetron," IEEE Trans. Plasma Sci., Vol. 40, No. 6, 1563-1568, 2012.
doi:10.1109/TPS.2012.2187288

45. Kovalenko, V. F., Physics of Heat Transfer and Electro-vacuum Devices, Soviet Radio, Moscow, 1975.

46. Latham, R. V., High Voltage Vacuum Insulation, Academic Press, London, 1995.


© Copyright 2014 EMW Publishing. All Rights Reserved