PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 136 > pp. 61-77

COMPUTATIONAL PERFORMANCE OF A WEIGHTED REGULARIZED MAXWELL EQUATION FINITE ELEMENT FORMULATION

By R. Otin, L. E. Garcia-Castillo, I. Martinez-Fernandez, and D. Garcia-Donoro

Full Article PDF (328 KB)

Abstract:
The aim of this work is to asses the computational performance of a finite element formulation based on nodal elements and the regularized Maxwell equations. We analyze the memory requirements and the condition number of the matrix when the formulation is applied to electromagnetic engineering problems. As a reference, we solve the same problems with the best known finite element formulation based on edge elements and the double curl Maxwell equations. Finally, we compare and discuss the computational efficiency of both approaches.

Citation:
R. Otin, L. E. Garcia-Castillo, I. Martinez-Fernandez, and D. Garcia-Donoro, "Computational Performance of a Weighted Regularized Maxwell Equation Finite Element Formulation," Progress In Electromagnetics Research, Vol. 136, 61-77, 2013.
doi:10.2528/PIER12082005
http://www.jpier.org/PIER/pier.php?paper=12082005

References:
1. Otin, R., "Regularized Maxwell equations and nodal finite elements for electromagnetic field computations," Electromagnetics, Vol. 30, 190-204, 2010.
doi:10.1080/02726340903485489

2. Otin, R. and H. Gromat, "Specific absorption rate computations with a nodal-based finite element formulation," Progress In Electromagnetics Research, Vol. 128, 399-418, 2012.

3. Otin, R., R. Mendez, and O. Fruitos, "A numerical model for the search of the optimum capacitance in electromagnetic metal forming," The 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET 2011), AIP Conference Proceedings, Vol. 1383, 935-942, 2011.

4. Ciarlet, P., "Augmented formulations for solving Maxwell equations," Computer Methods in Applied Mechanics and Engineering, Vol. 194, 559-586, 2005.
doi:10.1016/j.cma.2004.05.021

5. Hazard, C. and M. Lenoir, "On the solution of the time-harmonic scattering problems for Maxwell's equations," SIAM Journal on Mathematical Analysis, Vol. 27, 1597-1630, 1996.
doi:10.1137/S0036141094271259

6. Bui, V. P., X. C. Wei, and E. P. Li, "An efficient simulation technology for characterizing the ultra-wide band signal propagation in a wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2575-2588, 2010.
doi:10.1163/156939310793675691

7. Fernandez-Recio, R., L. E. Garcia-Castillo, S. Llorente-Romano, and I. Gomez-Revuelto, "Convergence study of a non-standard Schwarz domain decomposition method for finite element mesh truncation in electro-magnetics," Progress In Electromagnetics Research, Vol. 120, 439-457, 2011.

8. Bui, V. P., X.-C. Wei, E. P. Li, and W.-J. Zhao, "An e±cient hybrid technique for analysis of the electromagnetic field distribution inside a closed environment," Progress In Electromagnetics Research, Vol. 114, 301-315, 2011.

9. Gomez-Revuelto, I., L. E. Garcia-Castillo, and L. F. Demkowicz, "A comparison between PML, infinite elements and an iterative BEM as mesh truncation methods for HP self-adaptive procedures in electromagnetics," Progress In Electromagnetics Research, Vol. 126, 499-519, 2012.
doi:10.2528/PIER12020201

10. Cvetkovi, M., D. Poljak, and A. Peratta, "FETD computation of the temperature distribution induced into a human eye by a pulsed laser," Progress In Electromagnetics Research, Vol. 120, 403-421, 2011.

11. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402

12. Jin, J., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, 2002.

13. Salazar-Palma, M., T. K. Sarkar, L.-E. Garcia-Castillo, T. Roy, and A. Djordjevic, Iterative and Self-adaptive Finite-elements in Electromagnetic Modeling, Artech House Publishers, 1998.

14. Otin, R., "Numerical study of the thermal effects induced by a RFID antenna in vials of blood plasma," Progress In Electromagnetics Research Letters, Vol. 22, 129-138, 2011.

15. Gomez-Calero, C., N. Jamaly, L. Gonzalez, and R. Martinez, Effect of mutual coupling and human body on MIMO performances, The 3rd European Conference on Antennas and Propagation (EuCAP 2009), 1042-1046, 2009.

16. Otin, R., J. Verpoorte, and H. Schippers, "A finite element model for the computation of the transfer impedance of cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 4, 950-958, 2011.
doi:10.1109/TEMC.2011.2146257

17. Boyse, W. E., D. R. Lynch, K. D. Paulsen, and G. N. Minerbo, "Nodal-based finite-element modeling of Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 40, 642-651, 1992.
doi:10.1109/8.144598

18. Costabel, M. and M. Dauge, "Weighted regularization of Maxwell equations in polyhedral domains," Numerische Mathematik, Vol. 93, No. 2, 239-277, 2002.
doi:10.1007/s002110100388

19. Bladel, J. V., Singular Electromagnetic Fields and Sources, IEEE Press, 1991.

20. Otin, R., "ERMES user guide," International Center for Numerical Methods in Engineering (CIMNE), Ref. IT-617, Tech. Rep., 2011.

21. GiD, The personal pre and post processor, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, 2012, Online Available: http://www.gidhome.com.

22. Hiptmair, R., "Finite elements in computational electromagnetism," Acta Numerica, Vol. 1, 237-339, 2002.

23. Zienkiewicz, O. C. and R. L. Taylor, The Finite Element Method, Butterworth-Heinemann, 2000.

24. García-Castillo, L. E. and M. Salazar-Palma, "Second-order Nédélec tetrahedral element for computational electromagnetics," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 13, No. 2-3, 261-387, 2000.
doi:10.1002/(SICI)1099-1204(200003/06)13:2/3<261::AID-JNM360>3.0.CO;2-L

25. Freund, R. W. and N. M. Nachtigal, "QMR: A quasi-minimal residual method for non-Hermitian linear systems," SIAM Journal: Numerische Mathematik, Vol. 60, 315-339, 1991.
doi:10.1007/BF01385726

26. Jorge-Mora, T., M. Alvarez-Folgueiras, J. Leiro, F. J. Jorge-Barreiro, F. J. Ares-Pena, and E. Lopez-Martin, "Exposure to 2.45 GHz microwave radiation provokes cerebral changes in induction of HSP-90 α/β heat shock protein in rat," Progress In Electromagnetics Research, Vol. 100, 351-379, 2010.
doi:10.2528/PIER09102804

27. Angulo, L. D., S. G. Garcia, M. F. Pantoja, C. C. Sanchez, and R. G. Martin, "Improving the SAR distribution in Petri-dish cell cultures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 815-826, 2010.
doi:10.1163/156939310791036322

28. Trujillo-Romero, C. J., L. Leija, and A. Vera, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole, inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-125, 2011.

29. Mansour, R. R., R. S. K. Tong, and R. H. Machpie, "Simplified description of the field distribution in finlines and ridge waveguides and its application to the analysis of E-plane discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 12, 1825-1832, 1988.
doi:10.1109/22.17419

30. Baumann, D., C. Fumeaux, P. Leuchtmann, and R. Vahldieck, "Finite-volume time-domain (FVTD) method and its application to the analysis of hemispherical dielectric-resonator antennas ," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 985-988, 2003.

31. Aghabarati, A. and J. P. Webb, "Auxiliary space preconditioning for hierarchical elements," The 11th International Workshop on Finite Elements for Microwave Engineering (FEM2012), Estes Park, Colorado, USA, 2012.

32. Ledger, P. D. and K. Morgan, "The application of the HP-finite element method to electromagnetic problems," Archives of Computational Methods in Engineering, Vol. 12, No. 3, 235-302, 2005.
doi:10.1007/BF02736177

33. Garcia-Donoro, D., I. Martinez-Fernandez, L. E. Garcia-Castillo, Y. Zhang, and T. K. Sarkar, "RCS computation using a parallel incore and out-of-core direct solver," Progress In Electromagnetics Research, Vol. 118, 505-525, 2011.
doi:10.2528/PIER11052611


© Copyright 2014 EMW Publishing. All Rights Reserved