PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 133 > pp. 477-493

WIDEBAND MILLIMETER-WAVE CAVITY-BACKED BOWTIE ANTENNA

By S.-W. Qu and K. B. Ng

Full Article PDF (1,682 KB)

Abstract:
Although many directive antennas operating in a narrow band of millimeter (mm) waves were reported, e.g., antennas for 60-GHz wireless local area network (WLAN), their wideband counterparts are still unpopular. Cavity-backed antennas (CBAs) are widely developed and reported in microwave frequency bands, but few literatures can be found about mm-wave CBAs in spite that their many properties are quite suitable for mm-wave applications. This paper presents a wideband unidirectional CBA with a bowtie exciter, operating in a frequency band of 40 ~ over 75 GHz, and it is carefully analyzed in terms of influences of all antenna components on radiation patterns, broadside gains, and reflection coefficients. Then, the antenna prototype is built by generic printed circuit board (PCB) technologies, and measurements prove the validity of simulations.

Citation:
S.-W. Qu and K. B. Ng, "Wideband Millimeter-Wave Cavity-Backed Bowtie Antenna," Progress In Electromagnetics Research, Vol. 133, 477-493, 2013.
doi:10.2528/PIER12091202
http://www.jpier.org/PIER/pier.php?paper=12091202

References:
1. Soliman, E. A., et al., "Series-fed microstrip antenna arrays operating at 26 GHz," IEEE Int. Symp. Antennas Propagat. Soc., 1-4, 2010.

2. Huang, K.-C. and D. J. Edwards, Millimetre Wave Antennas for Gigabit Wireless Communications, John Wiley & Sons Ltd., United Kingdom, 2008.

3. Kolak, F. and C. Eswarappa, "A low profile 77 GHz three beam antenna for automotive radar," IEEE MTT-S Int Microw. Symp. Digest, Vol. 2, 1107-1110, 2001.

4. Rebollo, A., et al., "A broadband radiometer configuration at 94 GHz in planar technology," IEEE MTT-S Int. Microw. Workshop Series on Millimeter Wave Integration Technol. IMWS), 89-92, 2011.

5. Schulwitz, L. and A. Mortazawi, "Millimeter-wave dual polarized L-shaped horn antenna for wide-angle phased arrays," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 9, 2663-2668, Sept. 2006.
doi:10.1109/TAP.2006.880761

6. Xu, O., "Diagonal horn gaussian e±ciency enhancement by dielectric loading for submillimeter wave application at 150 GHz," Progress In Electromagnetics Research, Vol. 114, 177-194, 2011.

7. Miura, Y., et al., "Double-layer full-corporate-feed hollow waveguide slot array antenna in the 60-GHz band," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 2844-2851, Aug. 2011.
doi:10.1109/TAP.2011.2158784

8. Bakhtafrooz, A. and A. Borj, "Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.
doi:10.2528/PIER10091706

9. Pan, Y.-M., et al., "Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 2780-2788, Aug. 2011.
doi:10.1109/TAP.2011.2158962

10. Perron, A., et al., "High-gain hybrid dielectric resonator antenna for millimeter-wave applications: Design and implementation," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 10, 2882-2992, Oct. 2009.
doi:10.1109/TAP.2009.2029292

11. Cui, B., C. Wang, and X.-W. Sun, "Microstrip array double-antenna (MADA) technology applied in millimeter wave compact radar front-end," Progress In Electromagnetics Research, Vol. 66, 125-136, 2006.
doi:10.2528/PIER06110902

12. Nesic, A., et al., "Millimeter wave printed antenna array with high side lobe suppression ," IEEE Int. Symp. Antennas Propagat. Soc., 3051-3054, 2006.

13. Pozar, D. M., "Considerations for millimeter wave printed antennas," IEEE Trans. on Antennas and Propagat., Vol. 31, No. 5, 740-747.
doi:10.1109/TAP.1983.1143124

14. Costanzo, S., I. Venneri, G. D. Massa, and G. Amendola, "Hybrid array antenna for broadband millimeter-wave applications," Progress In Electromagnetics Research, Vol. 83, 173-183, 2008.
doi:10.2528/PIER08051404

15. Douvalis, V., et al., "A monolithic active conical horn antenna array for millimeter and submillimeter wave applications," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 5, 1393-1398, May 2006.
doi:10.1109/TAP.2006.874338

16. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012.

17. Matekovits, L., M. Heimlich, and K. P. Esselle, "Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 49-61, 2011.
doi:10.1163/156939311793898260

18. Yeap, S. B., et al., "Gain-enhanced 60-GHz LTCC antenna array with open air cavities," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 9, 3470-3473, Sept. 2011.
doi:10.1109/TAP.2011.2161549

19. De Lange, G., et al., "Development of a 3×3 micromachined millimeter wave SIS imaging array," IEEE Trans. on Appl. Superconductivity, Vol. 7, No. 2, 3593-3597, Jun. 1997.
doi:10.1109/77.622179

20. Camblor-Diaz, R., S. Ver-Hoeye, C. Vazquez-Antuna, G. R. Hotopan, M. G. Fernandez, and F. Las-Heras, "Sub-millimeter wave frequency scanning 8×1 antenna array," Progress In Electromagnetics Research, Vol. 132, 215-232, 2012.

21. Kramer, O., et al., "Very small footprint 60 GHz stacked Yagi antenna array," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 9, 3204-3210, Sept. 2011.
doi:10.1109/TAP.2011.2161562

22. Hayashi, Y., et al., "Millimeter-wave microstrip comb-line antenna using reflection-canceling slit structure," IEEE Trans. on Antennas and Popagat., Vol. 59, No. 2, 398-406, Feb. 2011.
doi:10.1109/TAP.2010.2096180

23. Akkermans, J. A. G., et al., "Balanced-fed planar antenna for millimeter-wave transceivers," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 10, 2871-2881, Oct. 2009.
doi:10.1109/TAP.2009.2029278

24. Seki, T., et al., "Millimeter-wave high-efficiency multilayer parasitic microstrip antenna array on teflon substrate," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 6, 2101-2106, Jun. 2005.

25. Thakur, J. P., W.-G. Kim, and Y.-H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasi-optics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.
doi:10.2528/PIER10022404

26. Hua, C. Z., X. D. Wu, N. Yang, and W. Wu, "Millimeter-wave homogenous cylindrical lens antenna for multiple fan-beam scanning," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1922-1929, 2012.
doi:10.1080/09205071.2012.721181

27. Kamchouchi, H. E. and G. Abouelseoud, "A novel approach to multiband- ultra-wideband millimeter wave antennas design based on repeated kernel array of microstrip patches (ReKAMP)," IEEE Int. Symp. Antennas Propagat. Soc., 246-249, 2005.

28. Kumar, A. and H. D. Hristov, Microwave Cavity Antennas, Artech House, Norwood, MA, 1989.

29. Li, R., et al., "Development of a wide-band short backfire antenna excited by an unbalance-fed H-shaped slot," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 2, 662-671, Feb. 2005.
doi:10.1109/TAP.2004.841291

30. Li, R., et al., "A circularly polarized short backfire antenna excited by an unbalance-fed cross aperture," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 3, 852-859, Mar. 2006.
doi:10.1109/TAP.2006.869910

31. Ou Yang, J., S. Bo, J. Zhang, and F. Yang, "A low-profile unidirectional cavity-backed log-periodic slot antenna," Progress In Electromagnetics Research, Vol. 119, 423-433, 2011.
doi:10.2528/PIER11070503

32. Wang, F. J. and J.-S. Zhang, "Wideband cavity-backed patch antenna for PCS/IMT2000/2.4 GHz WLAN," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801

33. Qu, S.-W., "Study on wideband cavity-backed bowtie antennas," Ph.D. Dissertation, The City University of Hong Kong, 2009.

34. Hua, C. Z., X. D. Wu, and W. Wu, "A cavity-backed aperture-coupled microstrip patch antenna array with sum/difference beams," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 7, 932-941, 2012.
doi:10.1080/09205071.2012.710381

35. Grzyb, J., et al., "Wideband cavity-backed folded dipole superstrate antenna for 60 GHz applications," IEEE Int. Symp. Antennas Propagat. Soc., 3939-3942, 2006.

36. Qu, S.-W., et al., "Wideband cavity-backed bowtie antenna with pattern improvement," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 12, 3850-3854, Dec. 2008.
doi:10.1109/TAP.2008.2007395

37. Qu, S.-W. and C.-L. Ruan, "Effect of round corners on bowtie antennas," Progress In Electromagnetics Research, Vol. 57, 179-195, 2006.
doi:10.2528/PIER05072103

38. Qu, S.-W., et al., "Ultrawideband composite cavity-backed folded sectorial bowtie antenna with stable pattern and high gain ," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 8, 2478-2483, Aug. 2009.
doi:10.1109/TAP.2009.2024585

39. Qu, S.-W., C. H. Chan, and Q. Xue, "Ultrawideband composite cavity-backed rounded triangular bowtie antenna with stable patterns," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 685-695, 2009.
doi:10.1163/156939309788019930

40. Lee, J., et al., "A low-power low-cost fully integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly," IEEE J. Solid-State Circuits, Vol. 45, No. 2, 264-275, Feb. 2010.
doi:10.1109/JSSC.2009.2034806


© Copyright 2014 EMW Publishing. All Rights Reserved