PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 133 > pp. 217-234

REVERBERATION CHAMBER AS A MULTIVARIATE PROCESS: FDTD EVALUATION OF CORRELATION MATRIX AND INDEPENDENT POSITIONS

By G. Gradoni, V. Mariani Primiani, and F. Moglie

Full Article PDF (406 KB)

Abstract:
This paper evaluates the mode-stirring efficiency in terms of uncorrelated positions of a mechanical stirrer operating inside a reverberation chamber (RC). The actual RC is simulated and viewed as a multivariate random process: the chamber field is sampled in a lattice of spatial points distributed uniformly over a volume of arbitrary dimensions. By adopting such a grid, the stirrer efficiency is then computed through the correlation matrix, accounting for the residual correlation between stirrer positions. The second-order statistics are calculated averaging over the sampling volume. Results are presented for two stirrers that move in both synchronous and interleaved mode. A comparison with the traditional circular correlation (CC) method, for the determination of the uncorrelated positions, is done showing how CC overestimates stirrer efficiency.

Citation:
G. Gradoni, V. Mariani Primiani, and F. Moglie, "Reverberation Chamber as a Multivariate Process: FDTD Evaluation of Correlation Matrix and Independent Positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013.
doi:10.2528/PIER12091807
http://www.jpier.org/PIER/pier.php?paper=12091807

References:
1. International Standards-IEC 61000-4-21, Electromagnetic compatibility (EMC) --- Part 4-21: Testing and measurement techniques --- Reverberation chamber test methods,2.0 Ed., Geneva, Switzerland, 2011.

2. Mariani Primiani, V. and F. Moglie, "Numerical simulation of LOS and NLOS conditions for an antenna inside a reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2319-2331, 2010.
doi:10.1163/156939310793675600

3. Chen, X., "Measurements and evaluations of multi-element antennas based on limited channel samples in a reverberation chamber," Progress In Electromagnetics Research, Vol. 131, 45-62, 2012.

4. Pomianek, A. J., K. Staniec, and Z. Joskiewicz, "Practical remarks on measurement and simulation methods to emulate the wireless channel in the reverberation chamber," Progress In Electromagnetics Research, Vol. 105, 49-69, 2010.
doi:10.2528/PIER10022605

5. Staniec, K. and A. J. Pomianek, "On simulating the radio signal propagation in the reverberation chamber with the ray launching method," Progress In Electromagnetics Research B, Vol. 27, 83-99, 2011.

6. Genender, E., C. L. Holloway, K. A. Remley, J. M. Ladbury, G. Koepke, and H. Garbe, "Simulating the multipath channel with a reverberation chamber: Application to bit error rate measurements," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 4, 766-777, 2010.
doi:10.1109/TEMC.2010.2044578

7. Centeno, A. and N. Alford, "Measurement of zigbee wireless communications in mode-stirred and mode-tuned reverberation chamber," Progress In Electromagnetics Research M, Vol. 18, 171-178, 2011.

8. Staniec, K., "Evaluation of the zigbee transmission repetition mechanism in the variably-loaded reverberation chamber," Progress In Electromagnetics Research, Vol. 132, 297-314, 2012.

9. El Baba, I., S. Lalléchère, and P. Bonnet, "Numerical total scattering cross section from reverberating electromagnetic experiments," Progress In Electromagnetics Research Letters, Vol. 19, 127-135, 2010.

10. Lalléchère, S., S. Girard, D. Roux, P. Bonnet, F. Paladian, and A. Vian, "Mode stirred reverberation chamber (MSRC): A large and e±cient tool to lead high frequency bioelectromagnetic in vitro experimentation," Progress In Electromagnetics Research B, Vol. 26, 257-290, 2010.
doi:10.2528/PIERB10062313

11. Moglie, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506

12. Gradoni, G., F. Moglie, A. P. Pastore, and V. Mariani Primiani, "Numerical and experimental analysis of the field to enclosure coupling in reverberation chamber and comparison with anechoic chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 203-211, 2006.
doi:10.1109/TEMC.2006.870805

13. Fedeli, D., G. Gradoni, V. Mariani Primiani, and F. Moglie, "Accurate analysis of reverberation field penetration into an equipment-level enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 2, 170-180, 2009.
doi:10.1109/TEMC.2009.2013456

14. Mariani Primiani, V., F. Moglie, and A. P. Pastore, "Field penetration through a wire mesh screen excited by a reverberation chamber field: FDTD analysis and experiments," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 4, 883-891, 2009.
doi:10.1109/TEMC.2009.2032650

15. Wang, Q., E. Cheng, and Z. Qu, "On the shielding effectiveness of small-dimension enclosures using a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 562-569, 2011.
doi:10.1109/TEMC.2011.2157164

16. Lampasi, D. A. and M. S. Sarto, "Shielding effectiveness of a thick multilayered panel in a reverberating environment," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 579-588, 2011.
doi:10.1109/TEMC.2011.2132723

17. Moglie, F., D. Micheli, S. Laurenzi, M. Marchetti, and V. Mariani Primiani, "Electromagnetic shielding performance of carbon foams," Carbon, Vol. 50, No. 5, 1972-1980, 2012.
doi:10.1016/j.carbon.2011.12.053

18. Holloway, C. L., D. A. Hill, J. Ladbury, G. Koepke, and R. Garzia, "Shielding effectiveness measurements of materials using nested reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 350-356, 2003.
doi:10.1109/TEMC.2003.809117

19. Hill, D. A., "Electronic mode stirring for reverberating chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, 294-299, 1994.
doi:10.1109/15.328858

20. Cozz, A., "The role of losses in the definition of the overmoded condition for reverberation chambers and their statistics," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 296-307, 2011.
doi:10.1109/TEMC.2010.2081993

21. Serra, R. and F. G. Canavero, "Bivariate statistical approach for `good-but-imperfect' electromagnetic reverberation," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 554-561, 2011.
doi:10.1109/TEMC.2011.2145382

22. Gradoni, G. and L. R. Arnaut, "Generalized extreme-value distributions of power near a boundary inside electromagnetic reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 506-515, 2010.
doi:10.1109/TEMC.2010.2043107

23. Vaccari, A., A. Cala'Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.

24. Edwards, R., A. Marvin, and S. Porter, "Uncertainty analyses in the finite-difference time-domain method," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 155-163, 2010.
doi:10.1109/TEMC.2009.2034645

25. Mengue, S., E. Richalot, and O. Picon, "Comparison between different criteria for evaluating reverberation chamber functioning using a 3-D FDTD algorithm ," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 2, 237-245, 2008.
doi:10.1109/TEMC.2008.921049

26. Moglie, F., "Convergence of the reverberation chambers to the equilibrium analyzed with the finite-difference time-domain algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 469-476, 2004.
doi:10.1109/TEMC.2004.831904

27. Amador, E., C. Lemoine, P. Besnier, and A. Laisné, "Reverber-ation chamber modeling based on image theory: Investigation in the pulse regime," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 4, 778-789, 2010.
doi:10.1109/TEMC.2010.2049576

28. Zhao, H. and Z. Shen, "Hybrid discrete singular convolutionmethod of moments analysis of a 2-d transverse magnetic reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 612-619, 2010.
doi:10.1109/TEMC.2010.2041005

29. Moglie, F. and A. P. Pastore, "FDTD analysis of plane waves superposition to simulate susceptibility tests in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 195-202, 2006.
doi:10.1109/TEMC.2006.870793

30. Magdowski, M., S. V. Tkachenko, and R. Vick, "Coupling of stochastic electromagnetic fields to a transmission line in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 308-317, 2011.
doi:10.1109/TEMC.2010.2097267

31. West, J. C., C. F. Bunting, and V. Rajamani, "Accurate and efficient numerical simulation of the random environment within an ideal reverberation chamber ," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 2012.
doi:10.1109/TEMC.2011.2161636

32. Mariani Primiani, V. and F. Moglie, "Numerical simulation of reverberation chamber parameters affecting the received power statistics," EEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 522-532, 2012.
doi:10.1109/TEMC.2011.2167337

33. Nisanci, M., E. KÄuÄuksille, Y. Cengiz, A. Orlandi, and A. Duffy, "The prediction of the electric field level in the reverberation chamber depending on position of stirrer," Expert Systems with Applications, Vol. 38, No. 3, 1689-1696, 2011.
doi:10.1016/j.eswa.2010.07.093

34. Hong, J.-I. and C.-S. Huh, "Optimization of stirrer with various parameters in reverberation chamber," Progress In Electromagnetics Research, Vol. 104, 15-30, 2010.
doi:10.2528/PIER09121610

35. Moglie, F. and V. Mariani Primiani, "Analysis of the independent positions of reverberation chamber stirrers as a function of their operating conditions," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 288-295, 2011.
doi:10.1109/TEMC.2011.2106789

36. Pirkl, R. J., K. A. Remley, and C. S. Lötbäck Patané, "Reverber-ation chamber measurement correlation," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 533-545, 2012.
doi:10.1109/TEMC.2011.2166964

37. Moglie, F. and V. Mariani Primiani, "Numerical analysis of a new ocation for the working volume inside a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 238-245, 2012.
doi:10.1109/TEMC.2012.2186303

38. Amador, E., C. Lemoine, and P. Besnier, "Numerical study of spatial correlation in reverberation chamber," Electronics Letters, Vol. 47, No. 24, 1319-1320, 2011.
doi:10.1049/el.2011.3180

39. Cozza, A., "A skeptic's view of unstirred components," EMC Europe 2011, 174-179, York, UK, Sep. 2011.

40. Maloney, J. G., K. L. Shlager, and J. S. Smith, "A simple FDTD model for transient excitation of antennas by transmission lines," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 289-292, 1994.
doi:10.1109/8.277228

41. Anderson, T. W., "R. A. Fisher and multivariate analysis," Statistical Science, Vol. 11, No. 1, 20-34, 1996.
doi:10.1214/ss/1032209662

42. Wellander, N., O. Lunden, and M. Backstrom, "Experimental investigation and mathematical modeling of design parameters for e±cient stirrers in mode-stirred reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 1, 94-103, 2007.
doi:10.1109/TEMC.2006.888166

43. Hill, D. A. and J. Ladbury, "Spatial-correlation functions of fields and energy density in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 1, 95-101, 2002.
doi:10.1109/15.990715


© Copyright 2014 EMW Publishing. All Rights Reserved