PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 134 > pp. 1-22

DIELECTRIC CHARACTERIZATION OF THE YEAST CELL BUDDING CYCLE

By J. L. Sebastian Franco, A. Sanchis Otero, J. R. Madronero, and S. M. San Martin

Full Article PDF (558 KB)

Abstract:
We combine experimental electrorotation data and the numerical analysis of the electrorotation chamber and cell to electrically characterize the Saccharomyces cerevisiae yeast budding cell cycle and to obtain the electrical parameters of the cell. To model the yeast cell we use spherical and doublet-shaped geometries with a four layered structure: cytoplasm, membrane, inner and outer walls. To derive the geometrical and electrical parameters of the yeast model we use the finite element method to calculate the yeast rotational velocity spectrum and apply the least-square method to fit the calculated values to experimental data. We show that the calculated yeast electrorotation spectra undergo significant changes throughout its budding cycle and that the calculated spectra fit experimental data obtained for 0% (start) and 50% representative budding stages very well. The analysis also shows the small variation of the rotation crossover frequency within a full span of the yeast growth cycle. As an application of this work, we apply the Maxwell-Wagner formalism to obtain the dielectric spectra of truly synchronized yeast suspensions.

Citation:
J. L. Sebastian Franco, A. Sanchis Otero, J. R. Madronero, and S. M. San Martin, "Dielectric Characterization of the Yeast Cell Budding Cycle," Progress In Electromagnetics Research, Vol. 134, 1-22, 2013.
doi:10.2528/PIER12100406
http://www.jpier.org/PIER/pier.php?paper=12100406

References:
1. MacQueen, L. A., M. Thibault, M. D. Buschmann, and M. R. Wertheimer, "Electro-manipulation of biological cells in microdevices," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 4, 1261-1268, 2012.

2. Li, H., T. Ye, and K. Y. Lam, "Numerical modeling of motion trajectory and deformation behavior of a cell in a nonuniform electric field ," Biomicrofluidics, Vol. 5, 021101, 2011.
doi:10.1063/1.3574449

3. Jones, T. B., "Basic theory of dielectrophoresis and electrorotation," IEEE Engineering in Medicine and Biology Magazine, 33-42, 2003.
doi:10.1109/MEMB.2003.1304999

4. Cena, E. G., C. Daltona, Y. Lia, S. Adamiab, L. M. Pilarskib, and K. V. I. S. Kaler, "A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells," Journal of Microbiological Methods, Vol. 58, 387-401, 2004.
doi:10.1016/j.mimet.2004.05.002

5. Sancho, M., G. Martinez, S. Munoz, J. L. Sebastian, and R. Pethig, "Interaction between cells in dielectrophoresis and electrorotation experiments," Biomicrofluidics, Vol. 4, 022802, 2010.
doi:10.1063/1.3454129

6. Hoettges, K. F., "Dielectrophoresis as a cell characterisation tool," Microengineering in Biotechnology: Methods in Molecular Biology, Vol. 583, 183-198, 2008.

7. Zienkiewicz, O. C., The Finite Element Method, 3rd Edition, McGraw-Hill, London, 1977.

8. Johnson, C., Numerical Solutions of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987.

9. Sekine, K., "Application of boundary element method to calculation of the complex permittivity of suspensions of cells in shape of D1h symmetry," Bioelectrochemistry, Vol. 52, 1-7, 2000.
doi:10.1016/S0302-4598(00)00072-6

10. Sancho, M., G. Martinez, and C. Martin, "Accurate dielectric modeling of shelled particles and cells," J. Electrost., Vol. 57, 143-156, 2003.
doi:10.1016/S0304-3886(02)00123-7

11. Sekine, K., Y. Watanabe, S. Hara, and K. Asami, "Boundary-element calculations for dielectric behavior of doublet-shaped cells," Biochim. Biophys. Acta, Vol. 1721, 130-138, 2005.
doi:10.1016/j.bbagen.2004.10.010

12. Pruyne, D., A. Legesse-Miller, L. Gao, Y. Dong, and A. Bretscher, "Mechanisms of polarized growth and organelle segregation in yeast," Annu. Rev. Cell Dev. Biol., Vol. 20, 559-591, 2004.
doi:10.1146/annurev.cellbio.20.010403.103108

13. McMurray, M. A. and J. Thorner, "Septins: Molecular partitioning and the generation of cellular asymmetry," Cell Division, Vol. 4, 18, 2009.
doi:10.1186/1747-1028-4-18

14. Held, P., "Monitoring growth of beer brewing strains of saccharomyces cerevisiae - The utility of synergy H1 for providing high quality kinetic data for yeast growth applications,", Biotek Application Note, 2010.

15. Asami, K., "Characterization of biological cells by dielectric spectroscopy," Journal of Non-Crystalline Solids, Vol. 305, 268-277, 2002.
doi:10.1016/S0022-3093(02)01110-9

16. Asami, K. and T. Yonezawa, "Dielectric behavior of non-spherical cells in culture," Biochim. Biophys. Acta, Vol. 1245, 317-324, 1995.
doi:10.1016/0304-4165(95)00116-6

17. Asami, K., E. Gheorghiu, and T. Yonezawa, "Dielectric behavior of budding yeast in cell separation," Biochim. Biophys. Acta, Vol. 1381, 234-240, 1998.
doi:10.1016/S0304-4165(98)00033-6

18. Lei, J., J. T. K. Wan, K. W. Yu, and H. Sun, "Dielectric behavior of nonspherical cell suspensions," J. Phys.: Condens. Matter, Vol. 13, 3583-3589, 2001.
doi:10.1088/0953-8984/13/15/302

19. Bordi, F., C. Cametti, and T. Gili, "Dielectric spectroscopy of erythrocyte cell suspensions. A comparison between Looyenga and Maxwell-Wagner-Hanai effective medium theory formulations," Journal of Non-Crystalline Solids, Vol. 305, 278-284, 2002.
doi:10.1016/S0022-3093(02)01111-0

20. Adohi, B. J-P., C. V. Bouanga, K. Fatyeyeva, and M. Tabellout, "Application of the Maxwell-Wagner-Hanai effective medium theory to the analysis of the interfacial polarization relaxations in conducting composite films," J. Phys. D: Appl. Phys., Vol. 42, 015302, 2009.
doi:10.1088/0022-3727/42/1/015302

21. Di Biasio, A., L. Ambrosonne, and C. Cametti, "The dielectric behavior of nonspherical biological cell suspensions: An analytical approach," Biophys. J., Vol. 99, 163-174, 2010.
doi:10.1016/j.bpj.2010.04.006

22. Asami, K., "Dielectric dispersion in biological cells of complex geometry simulated by the three-dimensional finite difference method," J. Phys. D: Appl. Phys., Vol. 39, 492-499, 2006.
doi:10.1088/0022-3727/39/3/012

23. Hozel, R., "Electric field calculation for electrorotation electrodes," J. Phys. D: Appl. Phys., Vol. 26, 2112-2116, 1993.
doi:10.1088/0022-3727/26/12/003

24. Maswiwat, K., M. Holtappels, and J. Gimsa, "Optimizing the electrode shape for four-electrode electrorotation chips," ScienceAsia, Vol. 33, 61-67, 2007.
doi:10.2306/scienceasia1513-1874.2007.33.061

25. Maswiwat, K., M. Holtappels, and J. Gimsa, "On the field distribution in electrorotation chambers: Influence of electrode shape," Electrochimica Acta, Vol. 51, No. 24, 5215-5220, 2006.
doi:10.1016/j.electacta.2006.03.048

26. Kakutani, T., S. Shibatani, and M. Sugai, "Electrorotation of non-spherical cells: Theory for ellipsoildal cells with an arbitrary number of shells," Bioelectrochemistry and Bioenergetics, Vol. 31, 131-145, 1993.
doi:10.1016/0302-4598(93)80002-C

27. Laforet, J., M. Frenea-Robin, H. Ceremonie, F. Buret, and L. Nicolas, "Automated cell characterization platform: Application to yeast protoplast study by electrorotation," Proc. of the 1st Int. Conf. on Biomedical Electronics and Devices, Biodevices, Funchal, Portugal, 2008, ISBN:978-989-8111-17-3..

28. Hughes, M. P., "Computer-aided analysis of conditions for optimizing practical electrorotation," Phys. Med. Biol., Vol. 43, 3639-3648, 1998.
doi:10.1088/0031-9155/43/12/019

29. Hughes, M. P., X. B. Wang, F. F. Becker, P. R. C. Gascoyne, and R. Pethig, "Computer-aided analyses of electric fields used in electrorotation studies," J. Phys. D: Appl. Phys., Vol. 27, 1564-1570, 1994.
doi:10.1088/0022-3727/27/7/035

30. Hozel, R., "Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz," Biophys. J., Vol. 73, No. 2, 1103-1109, 1997.
doi:10.1016/S0006-3495(97)78142-6

31. Vitols, E., R. J. North, and A. W. Linnane, "Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell," J. Biophys. Biochem. Cytol., Vol. 9, 689-699, 1961.
doi:10.1083/jcb.9.3.689

32. Moore, C. W., R. del Valle, J. McKoy, A. Pramanik, and R. E. Gordon, "Lesions and preferential initial localization of [S-methyl-3H] bleomycin A2 on Saccharomyces cerevisiae cell walls and membranes," Antimicrob. Agents Chemother., Vol. 36, No. 11, 2497-2505, 1992.
doi:10.1128/AAC.36.11.2497

33. Mulholland, J., D. Preuss, A. Moon, A. Wong, D. Dubrin, and D. Botstein, "Ultrastructure of the yeast actin cytoskeleton and its association," The Journal of Cell Biology, Vol. 125, No. 2, 1994.
doi:10.1083/jcb.125.2.381

34. Asami, K. and K. Sekine, "Dielectric modelling of cell division for budding and fission yeast," J. Phys. D: Appl. Phys., Vol. 40, 1128-1133, 2007.
doi:10.1088/0022-3727/40/4/033

35. Sebastian, J. L., S. Munoz, M. Sancho, G. Martnez, and G. Alvarez, "Electromechanical effects on multilayered cells in nonuniform rotating fields," Physical Review E, Vol. 84, 011926, 2011.
doi:10.1103/PhysRevE.84.011926

36. Sebastian, J. L., S. Munoz, M. Sancho, and G. Alvarez, "Polarizability of shelled particles of arbitrary shape in lossy media with an application to hematic cells," Physical Review E, Vol. 78, 051905, 2008.
doi:10.1103/PhysRevE.78.051905

37. Wang, X. B., R. Pethig, and T. B. Jones, "Relationship of dielectrophoretic and electrorotational behaviour exhibited by polarized particles," J. Phys. D: Appl. Phys., Vol. 25, 905-912, 1992.
doi:10.1088/0022-3727/25/6/001

38. Wang, X. B., Y. Huang, R. Holzel, J. P. H. Burt, and R. Pethig, "Theoretical and experimental investigations of the interdependence of the dielectric, dielectrophoretic and electrorotational behavior of colloidal particles," J. Phys. D: Appl. Phys., Vol. 26, 312-322, 1993.
doi:10.1088/0022-3727/26/2/021

39. Jones, T. B., Electromechanics of Particles, Cambridge University Press, Cambridge, 1995.

40. Wang, X. J., X. B. Wang, and P. R. C. Gascoyne, "General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method," J. Electrost., Vol. 39, 277-296, 1997.
doi:10.1016/S0304-3886(97)00126-5

41. Huang, Y., R. Holzel, R. Pethig, and X. B. Wang, "Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies," Phys. Med. Biol., Vol. 37, No. 7, 1499-1517, 1992.
doi:10.1088/0031-9155/37/7/003

42. Huang, J. P. and K. W. Yu, "First-principles approach to electrorotation assay," J. Phys.: Condens. Matter, Vol. 14, 1213-1221, 2002.
doi:10.1088/0953-8984/14/6/308

43. Kriegmaier, M., M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosac-charomyces pombe using electrorotation and electroorientation," Biochim. Biophys. Acta, Vol. 1568, 135-146, 2001.
doi:10.1016/S0304-4165(01)00210-0

44. Misirli, Z., E. T. Oner, and B. Kirdar, "Real imaging and size values of Saccharomyces cerevisiae cells with comparable contrast tuning to two environmental scanning electron microscopy modes," Scanning, Vol. 29, No. 1, 11-19, 2007.
doi:10.1002/sca.20005

45. Ren, Y., A. M. Donald, and Z. Zhang, "Investigation of the morphology, viability and mechanical properties of yeast cells in environmental SEM," Scanning, Vol. 30, No. 6, 435-442, 2008.
doi:10.1002/sca.20126

46. Osumi, M., "The ultrastructure of yeast: Cell structure and wall formation," Micron., Vol. 29, No. 2-3, 207-233, 1998.
doi:10.1016/S0968-4328(97)00072-3

47. Lesage, G. and H. Bussey, "Cell wall assembly in saccharomyces cerevisiae," Microbiol. Mol. Biol. Rev., Vol. 70, No. 2, 317-343, 2006.
doi:10.1128/MMBR.00038-05

48. Ferrier, G. A., A. N. Hladio, D. J. Thomson, G. E. Bridges, M. Hedayatipoor, S. Olson, and M. R. Freeman, "Microfluidic electromanipulation with capacitive detection for the mechanical analysis of cells," Biomicrofluidics, Vol. 2, 044102 (13pages), 2008.

49. Christopher, L. D., H. M. Gerard, and B. K. Douglas, "On the dielectric method of monitoring cellular viability," Pure & App. Chern., Vol. 65, No. 9, 1921-1926, 1993.
doi:10.1351/pac199365091921

50. Kestin, J., H. E. Khalifa, and R. J. Correia, "Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20-150°C and the pressure range 0.1-35MPa," J. Phys. Chem. Ref. Data, Vol. 10, No. 1, 1981.

51. Gascoyne, P. R. C., F. F. Becker, and X. B. Wang, "Numerical analysis of the influence of experimental conditions on the accuracy of dielectric parameters derived from electrorotation measurements," Bioelectrochemistry and Bioenergetics, Vol. 36, 115-125, 1995.
doi:10.1016/0302-4598(94)05015-M

52. Gimsa, J. and D. Wachner, "A polarization model overcoming the geometric restrictions of the Laplace solution for spheroidal cells: Obtaining new equations for field induced forces and transmembrane potential," Biophys. J., Vol. 77, 1316-1326, 1999.
doi:10.1016/S0006-3495(99)76981-X

53. Asami, K., E. Gheorghiu, and T. Yonezawa, "Dielectric behavior of budding yeast in cell separation," Biochim. Biophys. Acta, Vol. 1381, 234-240, 1998.
doi:10.1016/S0304-4165(98)00033-6


© Copyright 2014 EMW Publishing. All Rights Reserved