PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 135 > pp. 713-734

HIGH-ORDER UNCONDITIONALLY-STABLE FOUR-STEP ADI-FDTD METHODS AND NUMERICAL ANALYSIS

By Y.-D. Kong, Q.-X. Chu, and R.-L. Li

Full Article PDF (1,071 KB)

Abstract:
High-order unconditionally-stable three-dimensional (3-D) four-step alternating direction implicit finite-difference time-domain (ADI-FDTD) methods are presented. Based on the exponential evolution operator (EEO), the Maxwell's equations in a matrix form can be split into four sub-procedures. Accordingly, the time step is divided into four sub-steps. In addition, high-order central finite-difference operators based on the Taylor central finite-difference method are used to approximate the spatial differential operators first, and then the uniform formulation of the proposed high-order schemes is generalized. Subsequently, the analysis shows that all the proposed high-order methods are unconditionally stable. The generalized form of the dispersion relations of the proposed high-order methods is carried out. Finally, in order to demonstrate the validity of the proposed methods, numerical experiments are presented. Furthermore, the effects of the order of schemes, the propagation angle, the time step, and the mesh size on the dispersion are illustrated through numerical results. Specifically, the normalized numerical phase velocity error (NNPVE) and the maximum NNPVE of the proposed schemes are lower than that of the traditional ADI-FDTD method.

Citation:
Y.-D. Kong, Q.-X. Chu, and R.-L. Li, "High-Order Unconditionally-Stable Four-Step Adi-FDTD Methods and Numerical Analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.
doi:10.2528/PIER12102205
http://www.jpier.org/PIER/pier.php?paper=12102205

References:
1. Yee, , K. S., , "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas on Propag., Vol. 14, No. 3, 302-307, 1966.

2. Su, D., , D. M. Fu, and Z. H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
doi:10.2528/PIER07120902

3. Li, , J., , L. X. Guo, and H. Zeng, , "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research,, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104

4. Izadi, , M., , M. Z. A. A. Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, , 2011.

5. Koh, I. S., H. Kim, J. M. Lee, J. G. Yook, and C. S. Pil, "Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability," IEEE Trans. on Antennas on Propag., Vol. 54, No. 11, 3505-3510, 2006.
doi:10.1109/TAP.2006.884288

6. Wang, , C. C., C. W. Kuo, and , "An effcient scheme for processing arbitrary lumped multiport devices in the finite-difference time-domain method," IEEE Trans. on Microw. Theory and Tech, Vol. 55, No. 5, 958-965, 2007.
doi:10.1109/TMTT.2007.895652

7. Zygiridis, , T. T. , T. D. Tsiboukis, and , "Improved finite-difference time-domain algorithm based on error control for lossy materials," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 6, 1440-1445, 2008.
doi:10.1109/TMTT.2008.923903

8. Tofighi, , M. R., , "FDTD modeling of biological tissues Cole-Cole dispersion for 0.5{30 GHz using relaxation time distribution samples-novel and improved implementations," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 10, 2588-2596, 2009.
doi:10.1109/TMTT.2009.2029767

9. Kim, , H., I. S. Koh, and J. G. Yook, "Enhanced total-field/scattered-field technique for isotropic-dispersion FDTD scheme," IEEE Trans. on Antennas on Propag., Vol. 58, No. 10, 3407-3411, 2010.
doi:10.1109/TAP.2010.2055791

10. Taflove, , A. , S. C. Hagness, and , Computational Electrodynamics: The Finite-di®erence Time-domain Method,, 2nd Ed., Artech House, , Boston, MA, , 2000.

11. Namiki, , T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. on Microw. Theory and Tech., Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075

12. Zheng, , F., , Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. on Microw. Theory and Tech.,, Vol. 48, No. 9, 1550-1558, 2000.
doi:10.1109/22.868993

13. Sun, , G. L. , C. W. Trueman, and , "Analysis and numerical experiments on the numerical dispersion of two-dimensional ADI-FDTD," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 78-81, 2003.
doi:10.1109/LAWP.2003.814771

14. Zheng, , F. and Z. Chen, "Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 5, 1006-1009, 2001.
doi:10.1109/22.920165

15. Wang, M. H., , Z. Wang, and J. Chen, "A parameter optimized ADI-FDTD method," IEEE Antennas Wireless Propag. Lett. , Vol. 2, No. 1, 118-121, 2003.
doi:10.1109/LAWP.2003.815283

16. Ahmed, , I. , Z. Chen, and , "Error reduced ADI-FDTD methods," IEEE Antennas Wireless Propag. Lett., Vol. 4, 323-325, 2005.
doi:10.1109/LAWP.2005.855630

17. Zheng, , H. X., K. W. Leung, and , "An effcient method to reduce the numerical dispersion in the ADI-FDTD," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 7, 2295-2301, 2005.
doi:10.1109/TMTT.2005.850441

18. Zhang, , Y., S. W. Lu, and J. Zhang, "Reduction of numerical dispersion of 3-D higher order alternating-direction-implicit finite-di®erence time-domain method with artificial anisotropy," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 10, 2416-2428, 2009.
doi:10.1109/TMTT.2009.2029638

19. Kong, , K. B., , S. O. Park, and J. S. Kim, , "Stability and numerical dispersion of 3-D simpli¯ed sampling biorthogonal ADI method," Journal of Electromagnetic Waves and Application,, Vol. 24, No. 1, 1-12, 2010.
doi:10.1163/156939310790322136

20. Sun, , G., C. W. Trueman, and , "Approximate Crank-Nicolson schemes for the 2-D ¯nite-di®erence time-domain method for TEz waves," IEEE Trans. on Antennas on Propag., Vol. 52, No. 11, 2963-2972, 2004.
doi:10.1109/TAP.2004.835142

21. Xu, , K., , Z. H. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010..
doi:10.2528/PIER10020606

22. Fu, , W. , E. L. Tan, and , "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, , 2004.
doi:10.1049/el:20046040

23. Xiao, , F., X. H. Tang, L. Guo, and T. Wu, "High-order accurate split-step FDTD method for solution of Maxwell's equations," Electron. Lett., Vol. 43, No. 2, 72-73, 2007.
doi:10.1049/el:20073521

24. Chu, , Q. X. , Y. D. Kong, and , "Three new unconditionally-stable FDTD methods with high-order accuracy," IEEE Trans. on Antennas on Propag., Vol. 57, No. 9, 2675-2682, , 2009.
doi:10.1109/TAP.2009.2027045

25. Kong, , Y. D. , Q. X. Chu, and , "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012..
doi:10.2528/PIER11082512

26. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "E±cient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., , Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381

27. Ahmed, , I., , E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally-stable LOD-FDTD method," IEEE Trans. on Antennas on Propag., Vol. 56, No. 11, 3596-3600, 2008.
doi:10.1109/TAP.2008.2005544

28. Wang, , Z., , J. Chen, and Y. Chen, "Development of a higher-order ADI-FDTD method," Microwave Optical Technol. Lett.,, Vol. 37, No. 2, 8-12, 2003.
doi:10.1002/mop.10808

29. Fu, W., E. L. Tan, and , "Stability and dispersion analysis for higher order 3-D ADI-FDTD method," IEEE Trans. on Antennas on Propag., Vol. 53, No. 11, 3691-3696, 2005.
doi:10.1109/TAP.2005.858588

30. Liu, , Q. F., , Z. Chen, and W. Y. Yin, "An arbitrary order LOD-FDTD method and its stability and numerical dispersion," IEEE Trans. on Antennas on Propag., Vol. 57, No. 8, 24109-2417, 2009.

31. Kong, , Y. D. , Q. X. Chu, and , "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. on Antennas on Propag., Vol. 59, No. 9, 3280-3289, 2011.
doi:10.1109/TAP.2011.2161543

32. Yang, S. C., , Z. Chen, Y. Q. Yu, and W. Y. Yin, \An, "An unconditionally stable one-step arbitrary-order leapfrog ADI-FDTD method and its numerical properties," IEEE Trans. on Antennas on Propag., Vol. 60, No. 4, 1995-2003, 2012..
doi:10.1109/TAP.2012.2186249

33. Xiao, , F., , X. H. Tang, and H. Ma, "High-order US-FDTD based on the weighted ¯nite-di®erence method," Microwave Optical Technol. Lett., Vol. 45, No. 2, 142-144, 2005.
doi:10.1002/mop.20749

34. Sun, G., C. W. Trueman, and , "Optimized finite-difference time-domain methods on the (2, 4) stencil," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 3, 832-842, 2005..
doi:10.1109/TMTT.2004.842507

35. Fu, , W., E. L. Tan, and , "A parameter optimized ADI-FDTD method based on the (2, 4) stencil," IEEE Trans. on Antennas on Propag., Vol. 54, No. 6, 1836-1842, 2006.
doi:10.1109/TAP.2006.875512

36. Liu, , Q. F., , W. Y. Yin, Z. Chen, and P. G. Liu, "An e±cient method to reduce the numerical dispersion in the LOD-FDTD method based on the (2, 4) stencil," IEEE Trans. on Antennas on Propag.,, Vol. 58, No. 7, 2384-2393, 2010.
doi:10.1109/TAP.2010.2048857


© Copyright 2014 EMW Publishing. All Rights Reserved